
Discrete-time signals and systems
See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition

pages 8–79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of numbers:

x D fxŒn�g; �1 < n < 1:

Heren is an integer, andxŒn� is thenth sample in the sequence.

Discrete-time signals are often obtained by sampling continuous-time signals.

In this case thenth sample of the sequence is equal to the value of the analogue

signalxa.t/ at timet D nT :

xŒn� D xa.nT /; �1 < n < 1:

Thesampling period is then equal toT , and the sampling frequency is

fs D 1=T .

x[1]

... ...

t

xa.1T /

For this reason, althoughxŒn� is strictly thenth number in the sequence, we

often refer to it as thenth sample. We also often refer to “the sequencexŒn�”

when we mean the entire sequence.

Discrete-time signals are often depicted graphically as follows:
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x[3]

... ...

n
0−1−2−3−4

1 2 3

4

x[−2]
x[−4]

x[4]
x[0]

x[−1]

x[−3]

x[1]

x[2]

(This can be plotted using the MATLAB functionstem.) The valuexŒn� is
undefined for noninteger values ofn.

Sequences can be manipulated in several ways. Thesumandproduct of two
sequencesxŒn� andyŒn� are defined as the sample-by-sample sum and product
respectively. Multiplication ofxŒn� by a is defined as the multiplication of
each sample value bya.

A sequenceyŒn� is adelayedor shifted version ofxŒn� if

yŒn� D xŒn � n0�;

with n0 an integer.

Theunit sample sequence

1

n
0

is defined as

ıŒn� D

8

<

:

0 n ¤ 0

1 n D 0:

This sequence is often referred to as adiscrete-time impulse, or justimpulse.
It plays the same role for discrete-time signals as the Diracdelta function does
for continuous-time signals. However, there are no mathematical
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complications in its definition.

An important aspect of the impulse sequence is that an arbitrary sequence can

be represented as a sum of scaled, delayed impulses. For example, the

sequence

... ...

n
0−1−2−3−4

1 2 3

4

a�4

a�3 a�2
a�1

a0

a1

a2

a3

a4

can be represented as

xŒn� D a�4ıŒn C 4� C a�3ıŒn C 3� C a�2ıŒn C 2� C a�1ıŒn C 1� C a0ıŒn�

Ca1ıŒn � 1� C a2ıŒn � 2� C a3ıŒn � 3� C a4ıŒn � 4�:

In general, any sequence can be expressed as

xŒn� D

1
X

kD�1

xŒk�ıŒn � k�:

Theunit step sequence

1

n
0

is defined as

uŒn� D

8

<

:

1 n � 0

0 n < 0:

3



The unit step is related to the impulse by

uŒn� D

n
X

kD�1

ıŒk�:

Alternatively, this can be expressed as

uŒn� D ıŒn� C ıŒn � 1� C ıŒn � 2� C � � � D

1
X

kD0

ıŒn � k�:

Conversely, the unit sample sequence can be expressed as thefirst backward
difference of the unit step sequence

ıŒn� D uŒn� � uŒn � 1�:

Exponential sequencesare important for analysing and representing
discrete-time systems. The general form is

xŒn� D A˛n:

If A and˛ are real numbers then the sequence is real. If0 < ˛ < 1 andA is
positive, then the sequence values are positive and decrease with increasingn:

...

n
0

...

For �1 < ˛ < 0 the sequence alternates in sign, but decreases in magnitude.
For j˛j > 1 the sequence grows in magnitude asn increases.

A sinusoidal sequence

...
n

0

...
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has the form
xŒn� D A cos.!0n C �/ for all n;

with A and� real constants. The exponential sequenceA˛n with complex
˛ D j˛jej!0 andA D jAjej� can be expressed as

xŒn� D A˛n D jAjej� j˛jnej!0n D jAjj˛jnej.!0nC�/

D jAjj˛jn cos.!0n C �/ C j jAjj˛jn sin.!0n C �/;

so the real and imaginary parts are exponentially weighted sinusoids.

Whenj˛j D 1 the sequence is called thecomplex exponential sequence:

xŒn� D jAjej.!0nC�/ D jAj cos.!0n C �/ C j jAj sin.!0n C �/:

Thefrequency of this complex sinusoid is!0, and is measured in radians per
sample. Thephaseof the signal is�.

The indexn is always an integer. This leads to some important differences
between the properties of discrete-time and continuous-time complex
exponentials:

� Consider the complex exponential with frequency.!0 C 2�/:

xŒn� D Aej.!0C2�/n D Aej!0nej 2�n D Aej!0n:

Thus the sequence for the complex exponential with frequency !0 is
exactlythe same as that for the complex exponential with frequency
.!0 C 2�/. More generally, complex exponential sequences with
frequencies.!0 C 2�r/, wherer is an integer, are indistinguishable from
one another. Similarly, for sinusoidal sequences

xŒn� D A cosŒ.!0 C 2�r/n C �� D A cos.!0n C �/:

� In the continuous-time case, sinusoidal and complex exponential
sequences are always periodic. Discrete-time sequences are periodic (with
period N) if

xŒn� D xŒn C N � for all n:
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Thus the discrete-time sinusoid is only periodic if

A cos.!0n C �/ D A cos.!0n C !0N C �/;

which requires that

!0N D 2�k for k an integer:

The same condition is required for the complex exponential sequence

Cej!0n to be periodic.

The two factors just described can be combined to reach the conclusion that

there are onlyN distinguishable frequencies for which the corresponding

sequences are periodic with periodN . One such set is

!k D
2�k

N
; k D 0; 1; : : : ; N � 1:

Additionally, for discrete-time sequences the interpretation of high and low

frequencies has to be modified: the discrete-time sinusoidal sequence

xŒn� D A cos.!0n C �/ oscillates more rapidly as!0 increases from0 to �,

but the oscillations become slower as it increases further from� to 2�.
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The sequence corresponding to!0 D 0 is indistinguishable from that with

!0 D 2�. In general, any frequencies in the vicinity of!0 D 2�k for integer

k are typically referred to as low frequencies, and those in the vicinity of

!0 D .� C 2�k/ are high frequencies.
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2 Discrete-time systems

A discrete-time system is defined as a transformation or mapping operator that

maps an input signalxŒn� to an output signalyŒn�. This can be denoted as

yŒn� D T fxŒn�g:

y[n]x[n]
T f�g

Example: Ideal delay

yŒn� D xŒn � nd � W

y[n]=x[n−2]

... ...

n
0 1 2 3−1−2−3

... ...

n
0 1 2 3−1 4 5

x[n]

This operation shifts input sequence later bynd samples.
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Example: Moving average

yŒn� D
1

M1 C M2 C 1

M2
X

kD�M1

xŒn � k�

For M1 D 1 andM2 D 1, the input sequence

y[3]

x[n]

... ...

n
0 1 2 3−1 4 5

y[2]

yields an output with

:::

yŒ2� D
1

3
.xŒ1� C xŒ2� C xŒ3�/

yŒ3� D
1

3
.xŒ2� C xŒ3� C xŒ4�/

:::

In general, systems can be classified by placing constraintson the
transformationT f�g.

2.1 Memoryless systems

A system is memoryless if the outputyŒn� depends only onxŒn� at the samen.
For example,yŒn� D .xŒn�/2 is memoryless, but the ideal delay

9



yŒn� D xŒn � nd � is not unlessnd D 0.

2.2 Linear systems

A system is linear if the principle of superposition applies. Thus ify1Œn� is the

response of the system to the inputx1Œn�, andy2Œn� the response tox2Œn�, then

linearity implies

� Additivity:

T fx1Œn� C x2Œn�g D T fx1Œn�g C T fx2Œn�g D y1Œn� C y2Œn�

� Scaling:

T fax1Œn�g D aT fx1Œn�g D ay1Œn�:

These properties combine to form the general principle of superposition

T fax1Œn� C bx2Œn�g D aT fx1Œn�g C bT fx2Œn�g D ay1Œn� C by2Œn�:

In all casesa andb are arbitrary constants.

This property generalises to many inputs, so the response ofa linear system to

xŒn� D
P

k akxk Œn� will be yŒn� D
P

k akyk Œn�.

2.3 Time-invariant systems

A system is time invariant if a time shift or delay of the inputsequence causes

a corresponding shift in the output sequence. That is, ifyŒn� is the response to

xŒn�, thenyŒn � n0� is the response toxŒn � n0�.

For example, the accumulator system

yŒn� D

n
X

kD�1

xŒk�
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is time invariant, but the compressor system

yŒn� D xŒM n�

for M a positive integer (which selects everyM th sample from a sequence) is

not.

2.4 Causality

A system is causal if the output atn depends only on the inputat n and earlier

inputs.

For example, the backward difference system

yŒn� D xŒn� � xŒn � 1�

is causal, but the forward difference system

yŒn� D xŒn C 1� � xŒn�

is not.

2.5 Stability

A system is stable if every bounded input sequence produces abounded output

sequence:

� Bounded input: jxŒn�j � Bx < 1

� Bounded output: jyŒn�j � By < 1.

For example, the accumulator

yŒn� D

n
X

kD�1

xŒn�
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is an example of anunboundedsystem, since its response to the unit stepuŒn�

is

yŒn� D

n
X

kD�1

uŒn� D

8

<

:

0 n < 0

n C 1 n � 0;

which has no finite upper bound.

3 Linear time-invariant systems

If the linearity property is combined with the representation of a general
sequence as a linear combination of delayed impulses, then it follows that a
linear time-invariant (LTI) system can be completely characterised by its
impulse response.

Supposehk Œn� is the response of a linear system to the impulseıŒn � k� at
n D k. Since

yŒn� D T

(

1
X

kD�1

xŒk�ıŒn � k�

)

;

the principle of superposition means that

yŒn� D

1
X

kD�1

xŒk�T fıŒn � k�g D

1
X

kD�1

xŒk�hkŒn�:

If the system is additionally time invariant, then the response toıŒn � k� is
hŒn � k�. The previous equation then becomes

yŒn� D

1
X

kD�1

xŒk�hŒn � k�:

This expression is called theconvolution sum. Therefore, a LTI system has
the property that givenhŒn�, we can findyŒn� for any inputxŒn�. Alternatively,
yŒn� is theconvolution of xŒn� with hŒn�, denoted as follows:

yŒn� D xŒn� � hŒn�:
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The previous derivation suggests the interpretation that the input sample at
n D k, represented byxŒk�ıŒn � k�, is transformed by the system into an
output sequencexŒk�hŒn � k�. For eachk, these sequences are superimposed
to yield the overall output sequence:

n00−1 n

n00 n

1

n00−1 n

1

n0

xŒn� hŒn�

xŒ�1�ıŒn C 1�

xŒ1�ıŒn � 1�

xŒ�1�hŒn C 1�

xŒ1�hŒn � 1�

yŒn� D xŒ�1�hŒn C 1� C xŒ1�hŒn � 1�

A slightly different interpretation, however, leads to a convenient
computational form: thenth value of the output, namelyyŒn�, is obtained by
multiplying the input sequence (expressed as a function ofk) by the sequence
with valueshŒn � k�, and then summing all the values of the products
xŒk�hŒn � k�. The key to this method is in understanding how to form the
sequencehŒn � k� for all values ofn of interest.

To this end, note thathŒn � k� D hŒ�.k � n/�. The sequencehŒ�k� is seen to
be equivalent to the sequencehŒk� reflected around the origin:
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Shift

0

0

0

k

k

k

−2

2

n n+2

5

−5

n−5

Reflect

h[n−k]

h[−k]

h[k]

The sequencehŒn � k� is then obtained by shifting the origin of the sequence

to k D n.

To implement discrete-time convolution, the sequencesxŒk� andhŒn � k� are

multiplied together for�1 < k < 1, and the products summed to obtain the

value of the output sampleyŒn�. To obtain another output sample, the

procedure is repeated with the origin shifted to the new sample position.

Example: analytical evaluation of the convolution sum
Consider the output of a system with impulse response

hŒn� D

8

<

:

1 0 � n � N � 1

0 otherwise

to the inputxŒn� D anuŒn�. To find the output atn, we must form the sum over

all k of the productxŒk�hŒn � k�.
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−10 −5 0 5 10
0

0.5

1

k

x[
n]

−10 −5 n−(N−1) 0 n 5 10
0

0.5

1

k

h[
n−

k]

Since the sequences are non-overlapping for all negativen, the output must be

zero:

yŒn� D 0; n < 0:

For 0 � n � N � 1 the product terms in the sum arexŒk�hŒn � k� D ak , so it

follows that

yŒn� D

n
X

kD0

ak ; 0 � n � N � 1:

Finally, for n > N � 1 the product terms arexŒk�hŒn � k� D ak as before, but

the lower limit on the sum is nown � N C 1. Therefore

yŒn� D

n
X

kDn�N C1

ak ; n > N � 1:
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4 Properties of LTI systems

All LTI systems are described by the convolution sum

yŒn� D

1
X

kD�1

xŒk�hŒn � k�:

Some properties of LTI systems can therefore be found by considering the
properties of the convolution operation:

� Commutative: xŒn� � hŒn� D hŒn� � xŒn�

� Distributive over addition:

xŒn� � .h1Œn� C h2Œn�/ D xŒn� � h1Œn� C xŒn� � h2Œn�:

� Cascade connection:

x[n] y[n]

x[n] y[n]

h1Œn�

h1Œn�h2Œn�

h2Œn�

yŒn� D hŒn� � xŒn� D h1Œn� � h2Œn� � xŒn� D h2Œn� � h1Œn� � xŒn�.

� Parallel connection:

x[n] y[n]

h1Œn�

h2Œn�

yŒn� D .h1Œn� C h2Œn�/ � xŒn� D hpŒn� � xŒn�.

Additional important properties are:

� A LTI system isstable if and only if S D
P1

kD�1 jhŒk�j < 1. Theideal
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delay systemhŒn� D ıŒn � nd � is stable sinceS D 1 < 1; themoving
averagesystem

hŒn� D
1

M1 C M2 C 1

M2
X

kD�M1

ıŒn � k�

D

8

<

:

1
M1CM2C1

�M1 � n � M2

0 otherwise;

theforward difference systemhŒn� D ıŒn C 1� � ıŒn�, and thebackward
differencesystemhŒn� D ıŒn� � ıŒn � 1� are stable sinceS is the sum of a
finite number of finite samples, and is therefore less than1; the
accumulator system

hŒn� D

n
X

kD�1

ıŒk�

D

8

<

:

1 n � 0

0 n < 0

D uŒn�

is unstable sinceS D
P1

nD0 uŒn� D 1.

� A LTI system is causal if and only ifhŒn� D 0 for n < 0. The ideal delay
system is causal ifnd � 0; the moving average system is causal if
�M1 � 0 andM2 � 0; the accumulator and backward difference systems
are causal; the forward difference system is noncausal.

Systems with only a finite number of nonzero values inhŒn� are calledFinite
duration impulse response (FIR)systems. FIR systems are stable if each
impulse response value is finite. The ideal delay, the movingaverage, and the
forward and backward difference described above fall into this class.Infinite
impulse response (IIR)systems, such as the accumulator system, are more
difficult to analyse. For example, the accumulator system isunstable, but the
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IIR system

hŒn� D anuŒn�; jaj < 1

is stable since

S D

1
X

nD0

janj �

1
X

nD0

jajn D
1

1 � jaj
< 1

(it is the sum of an infinite geometric series).

Consider the system

delay
Forward

difference
One−sample

which has

hŒn� D .ıŒn C 1� � ıŒn�/ � ıŒn � 1�

D ıŒn � 1� � ıŒn C 1� � ıŒn � 1� � ıŒn�

D ıŒn� � ıŒn � 1�:

This is the impulse response of a backward difference system:

delay
Forward

difference

Backward
difference

One−sample

Here a non-causal system has been converted to a causal one bycascading with

a delay. In general,any non-causal FIR system can be made causal by

cascading with a sufficiently long delay.

Consider the system consisting of an accumulator followed by a backward

difference:
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Accumulator
difference
Backward

The impulse response of this system is

hŒn� D uŒn� � .ıŒn� � ıŒn � 1�/ D uŒn� � uŒn � 1� D ıŒn�:

The output is therefore equal to the input becausexŒn� � ıŒn� D xŒn�. Thus the
backward difference exactly compensates for (or inverts) the effect of the

accumulator — the backward difference system is theinverse systemfor the
accumulator, and vice versa. We define this inverse relationship for all LTI
systems:

hŒn� � hi Œn� D ıŒn�:

5 Linear constant coefficient difference equations

Some LTI systems can be represented in terms of linear constant coefficient

difference (LCCD) equations

N
X

kD0

akyŒn � k� D

M
X

mD0

bmxŒn � m�:

Example: difference equation representation of the accumulator
Take for example the accumulator

x[n]
difference
Backward

Accumulator
x[n] y[n]

HereyŒn� � yŒn � 1� D xŒn�, which can be written in the desired form with
N D 1, a0 D 1, a1 D �1, M D 0, andb0 D 1. Rewriting as

yŒn� D yŒn � 1� C xŒn�
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we obtain therecursion representation

y[n]

One−sample
delay

x[n]

where atn we add the current inputxŒn� to the previously accumulated sum

yŒn � 1�.

Example: difference equation representation of moving average
Consider now the moving average system withM1 D 0:

hŒn� D
1

M2 C 1
.uŒn� � uŒn � M2 � 1�/:

The output of the system is

yŒn� D
1

M2 C 1

M2
X

kD0

xŒn � k�;

which is a LCCDE withN D 0, a0 D 1, andM D M2, bk D 1=.M2 C 1/.

Using the sifting property ofıŒn�,

hŒn� D
1

M2 C 1
.ıŒn� � ıŒn � M2 � 1�/ � uŒn�

so

x[n]

sample delay

−

+

y[n]

Attenuator
Accumulator

1=.M2 C 1/

x1Œn�

.M2 C 1/
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Herex1Œn� D 1=.M2 C 1/.xŒn� � xŒn � M2 � 1�/ and for the accumulator
yŒn� � yŒn � 1� D x1Œn�. Therefore

yŒn� � yŒn � 1� D
1

M2 C 1
.xŒn� � xŒn � M2 � 1�/;

which is again a (different) LCCD equation withN D 1, a0 D 1, a1 D �1,

b0 D �bM2C1 D 1=.M2 C 1/.

As for constant coefficient differential equations in the continuous case,

without additional information or constraints a LCCDE doesnot provide a
unique solution for the output given an input. Specifically,suppose we have

the particular outputypŒn� for the inputxpŒn�. The same equation then has the

solution

yŒn� D ypŒn� C yhŒn�;

whereyhŒn� is any solution withxŒn� D 0. That is,yhŒn� is anhomogeneous
solution to thehomogeneous equation

N
X

kD0

akyhŒn � k� D 0:

It can be shown that there areN nonzero solutions to this equation, so a set of

N auxiliary conditions are required for a unique specification of yŒn� for a

givenxŒn�.

If a system is LTIand causal, then the initial conditions areinitial rest
conditions, and a unique solution can be obtained.

6 Frequency-domain representation of

discrete-time signals and systems

The Fourier transform considered here is strictly speakingthediscrete-time
Fourier transform (DTFT) , although Oppenheim and Schafer call it just the
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Fourier transform. Its properties are recapped here (with examples) to show

nomenclature.

Complex exponentials

xŒn� D ej!n; �1 < n < 1

are eigenfunctions of LTI systems:

yŒn� D

1
X

kD�1

hŒk�ej!.n�k/ D ej!n

 

1
X

kD�1

hŒk�e�j!k

!

:

Defining

H.ej!/ D

1
X

kD�1

hŒk�e�j!k

we have thatyŒn� D H.ej!/ej!n D H.ej!/xŒn�. Therefore,ej!n is an

eigenfunction of the system, andH.ej!/ is the associated eigenvalue.

The quantityH.ej!/ is called thefrequency responseof the system, and

H.ej!/ D HR.ej!/ C jHI .ej!/ D jH.ej!/jej ^H.ej!/:

Example: frequency response of ideal delay:
Consider the inputxŒn� D ej!n to the ideal delay systemyŒn� D xŒn � nd �:

the output is

yŒn� D ej!.n�nd / D e�j!nd ej!n:

The frequency response is therefore

H.ej!/ D e�j!nd :

Alternatively, for the ideal delayhŒn� D ıŒn � nd �,

H.ej!/ D

1
X

nD�1

ıŒn � nd �e�j!n D e�j!nd :

The real and imaginary parts of the frequency response are
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HR.ej!/ D cos.!nd / andHI .ej!/ D sin.!nd /, or alternatively

jH.ej!/j D 1

^H.ej!/ D �!nd :

The frequency response of a LTI system is essentially the same for continuous

and discrete time systems. However, an important distinction is that in the

discrete case it isalwaysperiodic in frequency with a period2�:

H.ej.!C2�// D

1
X

nD�1

hŒn�e�j.!C2�/n

D

1
X

nD�1

hŒn�e�j!ne�j 2�n

D

1
X

nD�1

hŒn�e�j!n D H.ej!/:

This last result holds sincee˙j 2�n D 1 for integern.

The reason for this periodicity is related to the observation that the sequence

˚

e�j!n
	

; �1 < n < 1

has exactly the same values as the sequence
n

e�j.!C2�/n
o

; �1 < n < 1:

A system will therefore respond in exactly the same way to both sequences.

Example: ideal frequency selective filters
The frequency response of an ideal lowpass filter is as follows:
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0

1

Only required part

��� 2��2�
!

!c�!c

Hlp.ej!/

Due to the periodicity in the response, it is only necessary to consider one

frequency cycle, usually chosen to be the range�� to �. Other examples of

ideal filters are:

0

0

0

1

1

1

Highpass

Bandstop

Bandpass

�

�

�

��

��

��
!

!

!
!a

!a !b

!b

!c

�!a

�!a

�!b

�!b

�!c

Hhp.e
j!/

Hbs.e
j!/

Hbp.e
j!/

In these cases it is implied that the frequency response repeats with period2�

outside of the plotted interval.

Example: frequency response of the moving-average system
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The frequency response of the moving average system

hŒn� D

8

<

:

1
M1CM2C1

�M1 � n � M2

0 otherwise

is given by

H.ej!/ D
1

M1 C M2 C 1

ej!.M2CM1C1/=2 � e�j!.M2CM1C1/=2

1 � e�j!
e�

j!.M2�M1C1/

2

D
1

M1 C M2 C 1

ej!.M2CM1C1/=2 � e�j!.M2CM1C1/=2

ej!=2 � e�j!=2
e�

j!.M2�M1/

2

D
1

M1 C M2 C 1

sinŒ!.M1 C M2 C 1/=2�

sin.!=2/
e�

j!.M2�M1/

2 :

For M1 D 0 andM2 D 4,

0
0

1

0

0

�

�

�

��

��

��

2�

2�

�2�

�2�
2�
5

� 2�
5

!

!

jH
.e

j
!

/j
^

H
.e

j
!

/

This system attenuates high frequencies (at around! D �), and therefore has

the behaviour of a lowpass filter.
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7 Fourier transforms of discrete sequences

The discrete time Fourier transform (DTFT) of the sequencexŒn� is

X.ej!/ D

1
X

nD�1

xŒn�e�j!n:

This is also called theforward transform or analysisequation. Theinverse
Fourier transform , or synthesisformula, is given by the Fourier integral

xŒn� D
1

2�

Z �

��

X.ej!/ej!nd!:

The Fourier transform is generally a complex-valued function of!:

X.ej!/ D XR.ej!/ C jXI .ej!/ D jX.ej!/jej ^X.ej!/:

The quantitiesjX.ej!/j and^X.ej!/ are referred to as themagnitudeand
phaseof the Fourier transform. The Fourier transform is often referred to as
theFourier spectrum.

Since the frequency response of a LTI system is given by

H.ej!/ D

1
X

kD�1

hŒk�e�j!k;

it is clear that the frequency response is equivalent to the Fourier transform of
the impulse response, and the impulse response is

hŒn� D
1

2�

Z �

��

H.ej!/ej!nd!:

A sufficient condition for the existence of the Fourier transform of a sequence
xŒn� is that it be absolutely summable:

P1

nD�1
jxŒn�j < 1. In other words,

the Fourier transform exists if the sum
P1

nD�1
jxŒn�j converges. The Fourier

transform may however exist for sequences where this is not true — a rigorous
mathematical treatment can be found in the theory ofgeneralised functions.
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8 Symmetry properties of the Fourier transform

Any sequencexŒn� can be expressed as

xŒn� D xeŒn� C xoŒn�;

wherexeŒn� is conjugate symmetric(xeŒn� D x�
e Œ�n�) andxoŒn� is conjugate

antisymmetric (xoŒn� D �x�
o Œ�n�). These two components of the sequence

can be obtained as:

xeŒn� D
1

2
.xŒn� C x�Œ�n�/ D x�

e Œ�n�

xoŒn� D
1

2
.xŒn� � x�Œ�n�/ D �x�

o Œ�n�:

If a real sequence is conjugate symmetric, then it is anevensequence, and if

conjugate antisymmetric, then it isodd.

Similarly, the Fourier transformX.ej!/ can be decomposed into a sum of

conjugate symmetric and antisymmetric parts:

X.ej!/ D Xe.ej!/ C Xo.ej!/;

where

Xe.ej!/ D
1

2
ŒX.ej!/ C X�.e�j!/�

Xo.ej!/ D
1

2
ŒX.ej!/ � X�.e�j!/�:

With these definitions, and letting

X.ej!/ D XR.ej!/ C jXI .ej!/;

the symmetry properties of the Fourier transform can be summarised as

follows:
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SequencexŒn� TransformX.ej!/

x�Œn� X�.e�j!/

x�Œ�n� X�.ej!/

RefxŒn�g Xe.ej!/

j ImfxŒn�g Xo.ej!/

xeŒn� XR.ej!/

xoŒn� jXI .ej!/

Most of these properties can be proved by substituting into the expression for

the Fourier transform. Additionally, for realxŒn� the following also hold:

Real sequencexŒn� TransformX.ej!/

xŒn� X.ej!/ D X�.e�j!/

xŒn� XR.ej!/ D XR.e�j!/

xŒn� XI .ej!/ D �XI .e�j!/

xŒn� jX.ej!/j D jX.e�j!/j

xŒn� ^X.ej!/ D �^X.e�j!/

xeŒn� XR.ej!/

xoŒn� jXI .ej!/

9 Fourier transform theorems

Let X.ej!/ be the Fourier transform ofxŒn�. The following theorems then

apply:
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SequencesxŒn�, yŒn� TransformsX.ej!/, Y.ej!/ Property

axŒn� C byŒn� aX.ej!/ C bY.ej!/ Linearity

xŒn � nd � e�j!nd X.ej!/ Time shift

ej!0nxŒn� X.ej.!�!0// Frequency shift

xŒ�n� X.e�j!/ Time reversal

nxŒn� j dX.ej!/
d!

Frequency diff.

xŒn� � yŒn� X.e�j!/Y.e�j!/ Convolution

xŒn�yŒn� 1
2�

R �

��
X.ej� /Y.ej.!��//d� Modulation

Some useful Fourier transform pairs are:

Sequence Fourier transform

ıŒn� 1

ıŒn � n0� e�j!n0

1 .�1 < n < 1/
P1

kD�1
2�ı.! C 2�k/

anuŒn� .jaj < 1/ 1

1�ae�j!

uŒn� 1

1�e�j! C
P1

kD�1
�ı.! C 2�k/

.n C 1/anuŒn� .jaj < 1/ 1

.1�ae�j!/2

sin.!cn/
�n

X.ej!/ D

8

<

:

1 j!j < !c

0 !c < j!j � �

xŒn� D

8

<

:

1 0 � n � M

0 otherwise

sinŒ!.M C1/=2�
sin.!=2/

e�j!M=2

ej!0n
P1

kD�1
2�ı.! � !0 C 2�k/
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