Discrete-time signals and systems
See Oppenheim and Schafer, Second Edition pages 8—93sbEHition
pages 8—79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of mambe
x = {x[n]}, —00 <N < .

Heren is an integer, and|n] is thenth sample in the sequence.

Discrete-time signals are often obtained by sampling cootis-time signals.
In this case thath sample of the sequence is equal to the value of the analogue
signalx,(¢) attimet = nT:

x[n] = x,(nT), —00 <n < .

Thesampling periodis then equal td", and the sampling frequency is

fo=1/T.
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For this reason, althougti»] is strictly thenth number in the sequence, we
often refer to it as theth sample We also often refer to “the sequenci:]”
when we mean the entire sequence.

Discrete-time signals are often depicted graphically #evis:



(This can be plotted using the MATLAB functiat em) The valuex[n] is
undefinedfor noninteger values of.

Sequences can be manipulated in several wayssiiltmeandproduct of two
sequences(n] andy[n] are defined as the sample-by-sample sum and product
respectively. Multiplication of[n] by a is defined as the multiplication of

each sample value hy.

A sequence[n] is adelayedor shifted version ofx|[n] if
y[n] = x[n —nol.
with ny an integer.

Theunit sample sequence

5[n]={(1) n#0

is defined as

n=0.

This sequence is often referred to adiscrete-time impulse or justimpulse.
It plays the same role for discrete-time signals as the Qieda function does
for continuous-time signals. However, there are no mathieala



complications in its definition.

An important aspect of the impulse sequence is that an arpisequence can
be represented as a sum of scaled, delayed impulses. Foplexdine
sequence

can be represented as
x[n] = a—46[n + 4]+ a—38[n + 3] + a—26[n + 2] + a_18[n + 1] 4+ apd[n]
+a16[n — 1] + a8[n — 2] + aszé[n — 3] + a4é[n — 4].

In general, any sequence can be expressed as

oo

x[a]= Y x[k]s[n —k].

k=—o00

Theunit step sequence

i

0

is defined as



The unit step is related to the impulse by

uln] = ) S[kI.

k=—o0

Alternatively, this can be expressed as
o0
uln] = 8[n] + 8[n — 1]+ 8[n — 2] +--- = Y _ 8[n —kl.
k=0
Conversely, the unit sample sequence can be expressedfastthackward

difference of the unit step sequence

o[n] = uln] —uln —1].

Exponential sequencesre important for analysing and representing
discrete-time systems. The general form is

x[n] = Aa".

If A anda are real numbers then the sequence is re@l.<dfae < 1 andA is
positive, then the sequence values are positive and decnetisincreasing:

HHH--- n
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For—1 < a < 0 the sequence alternates in sign, but decreases in magnitude
For|x| > 1 the sequence grows in magnitudenagcreases.

A sinusoidal sequence




has the form
x[n] = AcoSwon + ¢) forall n,

with A and¢ real constants. The exponential sequengeé with complex
o = |ale/?0 andA = |Ale/? can be expressed as

x[n] = Aa™ = |A|e/®|a|m /0" = |A||a|" e/ @0t
= |Alla|” coSwon + ¢) + j|Alla|" sin(won + ¢),
so the real and imaginary parts are exponentially weightedssids.

When|«| = 1 the sequence is called tkemplex exponential sequence

x[n] = [Ale/ @+ = |A| coswon + ¢) + j|A|sin(won + ).

Thefrequency of this complex sinusoid i&y, and is measured in radians per

sample. Thehaseof the signal isp.

The indexn is always an integer. This leads to some important diffezenc
between the properties of discrete-time and continuous-tomplex
exponentials:

e Consider the complex exponential with frequeri@y + 27):

x[n] — Ae](a)o+2n)n — Ael@won j2mn _ g jwon

Thus the sequence for the complex exponential with frequegas

exactlythe same as that for the complex exponential with frequency

(wo + 27). More generally, complex exponential sequences with

frequencieswy + 27 1), wherer is an integer, are indistinguishable from

one another. Similarly, for sinusoidal sequences
x[n] = Acoq(wg + 27r)n + ¢] = AcoSwon + ¢).

¢ In the continuous-time case, sinusoidal and complex exp@ie

seqguences are always periodic. Discrete-time sequene@eaodic (with

period N) if
x[n] = x[n + N] for all n.



Thus the discrete-time sinusoid is only periodic if
Acoqwon + ¢) = Acoqwon + woN + ¢),
which requires that
woN = 2mk for k an integer

The same condition is required for the complex exponentiglience
Ce’/®0" to be periodic.

The two factors just described can be combined to reach thawsion that
there are onlyV distinguishable frequencies for which the corresponding
sequences are periodic with periad One such set is

2k
oy = —, k=0,1,...,N —1.
N
Additionally, for discrete-time sequences the intergretaof high and low
frequencies has to be modified: the discrete-time sinuksetpience
x[n] = Acoqwon + ¢) oscillates more rapidly as, increases frond to

but the oscillations become slower as it increases furtioen fr to 2.
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The sequence correspondingdg = 0 is indistinguishable from that with
wo = 2m. In general, any frequencies in the vicinityof§ = 27k for integer
k are typically referred to as low frequencies, and thoseenvibinity of

wo = (m + 2mk) are high frequencies.



2 Discrete-time systems

A discrete-time system is defined as a transformation or mgpyperator that
maps an input signal[n] to an output signaj[x]. This can be denoted as

y[n] = T{x[n]}.

x[n] yln]

Example: Ideal delay

yln] = x[n —nq] :

Y
x[n]
\ \ \ \ \ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ ' n
\ \ \ \ \ \ \
-3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3 \
\ \ \ \ \ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ \
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y[n]=x[n-2] \‘ N \W RSN SN I B

This operation shifts input sequence laterfgysamples.



Example: Moving average

M>

1
ylnl = Y xln—k
M+ M, +1 My
For M, = 1 andM, = 1, the input sequence
y[3]
L .
x[n]
n

yields an output with

y2) = 5 l1] + x[2] + x[3)

y3] = 5 (x[2] + x[3] + xl4)

In general, systems can be classified by placing constraimtise
transformatior'{-}.
2.1 Memoryless systems

A system is memoryless if the outpulz] depends only or[n] at the sama.
For exampley[n] = (x[n])? is memoryless, but the ideal delay



y[n] = x[n — ng4] is notunless,; = 0.

2.2 Linear systems

A system is linear if the principle of superposition appli€bus if y; [n] is the
response of the system to the inpyfn], andy,[n] the response t®,[#], then
linearity implies

o Additivity:
T{xi[n] + x2[n]} = T{x1[n]} + T{xz[n]} = y1[n] + y2[n]
e Scaling:
T{axi[n]} = aT{xi[n]} = ayi[n].
These properties combine to form the general principle pégposition
T{axi[n] + bxa[n]} = aT{x1[n]} + bT {x2[n]} = ayi[n] + bya[n).

In all cases: andb are arbitrary constants.

This property generalises to many inputs, so the resporsdmedar system to
x[n] = 3y agxg[n] will be y[n] = >y ax yi[n].

2.3 Time-invariant systems

A system is time invariant if a time shift or delay of the inp@iguence causes
a corresponding shift in the output sequence. That igjyf is the response to
x[n], theny[n — n¢] is the response to[n — ny].

For example, the accumulator system

n

yinl = 3 xlk]

k=—o00

10



Is time invariant, but the compressor system
y[n] = x[Mn]

for M a positive integer (which selects evaWith sample from a sequence) is
not.

2.4 Causality

A system is causal if the output atdepends only on the inpat » and earlier
inputs
For example, the backward difference system
yln] = x[n] = x[n —1]
Is causal, but the forward difference system
y[n] = x[n + 1] — x[n]

IS not.

2.5 Stability
A system is stable if every bounded input sequence produlbesraded output
sequence:

e Bounded input: |x[n]| < Bx < 00

e Bounded output: |y[n]| < B, < co.

For example, the accumulator

n

yinl= 3 xln]

k=—o00

11



Is an example of annboundedystem, since its response to the unit stgg
IS

" 0 0
= Y u[n]={ "

ke —oo n—+1 n >0,

which has no finite upper bound.

3 Linear time-invariant systems

If the linearity property is combined with the represematof a general
sequence as a linear combination of delayed impulses, thaiows that a
linear time-invariant (LT1) system can be completely cloéeased by its
impulse response.

Supposéi, [n] is the response of a linear system to the impd([gse- k] at
n = k. Since

yinl = T{ 3 x[k]é’[n—k]},

k=—o00
the principle of superposition means that
o0 o0
yi= ) xT{ -k} = ) x[klheln]

k=—o00 k=—o00
If the system is additionally time invariant, then the rasg®tos[n — k] is
h|n — k]. The previous equation then becomes

o0
vl = Y x[klh[n —k].
k=—o00

This expression is called tlewnvolution sum Therefore, a LTI system has
the property that giveh[n], we can findy[r] for anyinput x[n]. Alternatively,
y[n] is theconvolution of x[n] with A[n], denoted as follows:

y[n] = x[n] * hin].

12



The previous derivation suggests the interpretation tieairtput sample at

n = k, represented by[k]é[n — k], is transformed by the system into an
output sequencelk]h[n — k]. For eachk, these sequences are superimposed
to yield the overall output sequence:

x[n] ‘ hin]
1 [

-1 0 n 0 n
X[ 1181 + 1] ‘ x[=1]h[n + 1]

A R B
-1 0 n 0 n
x[1]8[n — 1] x[1]h[n — 1]
!

0] o on "E)lll'n

‘ ‘ V] = x[=1Jhln + 1] + x[1]Afn — 1]

l l J n
A slightly different interpretation, however, leads to aneenient
computational form: thath value of the output, namely|r], is obtained by
multiplying the input sequence (expressed as a functidr) bfy the sequence
with valuesh[n — k], and then summing all the values of the products
x[k]h[n — k]. The key to this method is in understanding how to form the
sequenceé[n — k| for all values ofn of interest.

To this end, note thai[n — k] = h[—(k — n)]. The sequenck[—k] is seen to
be equivalent to the sequenici | reflected around the origin:

13



Reflect { { { { h[-K]
11 I | N K
-5 0 2
Shift ‘ ‘ { { h[n—kK]
RS [ SR
n-5 0 n n+2

The sequence[n — k] is then obtained by shifting the origin of the sequence
tok = n.

To implement discrete-time convolution, the sequendé$andhi[n — k] are
multiplied together fooco < k < 0o, and the products summed to obtain the
value of the output samplg[n]. To obtain another output sample, the
procedure is repeated with the origin shifted to the new saippsition.

Example: analytical evaluation of the convolution sum
Consider the output of a system with impulse response

1 0<n<N-1
hin] =
0 otherwise

to the inputx[n] = a"u[n]. To find the output at, we must form the sum over
all k of the productx[k]h[n — k].

14
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Since the sequences are non-overlapping for all negafitlee output must be
zero:

y[n] =0, n <0.
For0 < n < N — 1 the product terms in the sum argh[n — k] = a*, so it
follows that

n
y[n]:Zak, 0<n=<N-1
k=0

Finally, forn > N — 1 the product terms are[k]h[n — k] = a* as before, but
the lower limit on the sum is now — N + 1. Therefore

n

y[n] = Z a*, n>N-—1.
k=n—N+1

15



4 Properties of LTI systems

All LTI systems are described by the convolution sum

oo

ylnl= Y x[klh[n —k].

k=—00

Some properties of LTI systems can therefore be found byidensg the
properties of the convolution operation:

Commutative: x[n] x h[n] = hln] * x[n]

Distributive over addition:

x[n] * (hi[n] + ha[n]) = x[n] * hi[n] + x[n] * hy[n].

Cascade connection:

— hy[n] F— hy[n] ——

x[n] y[n]

— > hyn] — hin] ——

x[n] y[n]

y[n] = h[n] * x[n] = hi[n] * ha[n] * x[n] = ha[n] * hi[n] * x[n].

Parallel connection:

— hi[n]

— <—|—>—>
x[n] y[n]

—  h3[n]

y[n] = (h1[n] + h2[n]) * x[n] = hp[n] * x[n].
Additional important properties are:

e A LTI system isstableif and only if S = Y2 ___ |h[k]| < co. Theideal

16



delay systemi[n] = §[n — n4] is stable since = 1 < oo; themoving

averagesystem
1 &L
hin] = > 8ln—k]
My + M, +1 T,
1
MM, +1 —M; <n <M,
0 otherwise

theforward difference systemi[n] = é[n + 1] — §[n], and thebackward
difference systemi[n] = §[n] — §[n — 1] are stable sinc§ is the sum of a
finite number of finite samples, and is therefore less tkarthe
accumulator system

hin] = > 8]

k=—o00

1 n=>0
B 0 n<o0
= u[n]

is unstable sincé = Y 72 u[n] = co.

e A LTI systemis causalif and only #[n] = 0 for n < 0. The ideal delay
system is causal ff; > 0; the moving average system is causal if
—M; > 0 andM, > 0; the accumulator and backward difference systems
are causal; the forward difference system is noncausal.

Systems with only a finite number of nonzero values[im| are calledFinite
duration impulse response (FIR)systems. FIR systems are stable if each
Impulse response value is finite. The ideal delay, the moawggage, and the
forward and backward difference described above fall ini® ¢lassInfinite
impulse response (IIR)systems, such as the accumulator system, are more
difficult to analyse. For example, the accumulator systeamgtable, but the

17



IIR system
hn] = a"uln], la] < 1

IS stable since

o0 o0 1

S = a| < al® = < 00
S it = Sar =
n=0 n=0

(it is the sum of an infinite geometric series).

Consider the system

Forward One-samplg
difference delay

which has

hin] = (6[n + 1] — 6[n]) * 8[n — 1]
=4[n—1]x8[n + 1] —6[n — 1] x §[n]
= §[n] —8[n —1].

This is the impulse response of a backward difference system

One-sample Forward
delay difference

Backward |
difference

Here a non-causal system has been converted to a causal oasdayling with
a delay. In generagny non-causal FIR system can be made causal by
cascading with a sufficiently long delay

Consider the system consisting of an accumulator followyed backward
difference:

18



Backward
—»{ Accumulator——» >

difference

The impulse response of this system is
hin] = uln] x (6[n] — 8[n — 1]) = u[n] —u[n — 1] = §[n].

The output is therefore equal to the input becaugg¢ x 6[n] = x[n]. Thus the
backward difference exactly compensates for (or invehis)etfect of the
accumulator — the backward difference system isitrerse systenfor the
accumulator, and vice versa. We define this inverse relstiprfor all LTI
systems:

h[n] % h;[n] = §[n].

5 Linear constant coefficient difference equations

Some LTI systems can be represented in terms of linear gursiafficient
difference (LCCD) equations

N M
Zaky[n —k] = Z bmx[n —m].
k=0 m=0

Example: difference equation representation of the accumiator
Take for example the accumulator

Backward
— | Accumulatort——» >

X[l yin] difference X[

Herey[n] — y[n — 1] = x[n], which can be written in the desired form with
N =1,a9 =1,a; = —1,M = 0, andby = 1. Rewriting as

ylnl = yln — 1] + x[n]

19



we obtain theecursion representation

+ -
x[n] Y yIn]
One-sample
delay

where at: we add the current input[x] to the previously accumulated sum
y[n —1].

Example: difference equation representation of moving aveage

Consider now the moving average system with = 0:

1
My + 1

hin] = (u[n] —uln — My —1]).

The output of the system is

Yl = 5 2 Al =kl

which is a LCCDE withN = 0,a9 = 1,andM = M5, b, = 1/(M;, + 1).
Using the sifting property of[n],
1
M,y + 1

hin] = ([n] = 8[n — Mz — 1]) * un]

SO

Attenuator + x1[n]
— Accumulator——»
xn] | 1/(Mz2+1) y[n]
(M + 1) B

sample delay

20



Herexi[n] = 1/(M5 + 1)(x[n] — x[n — M, — 1]) and for the accumulator
y[n] — y[n — 1] = x1[n]. Therefore

ylnl=yln = 1] = (x[n] — x[n — My —1]),

M, + 1
which is again a (different) LCCD equationwith = 1,a¢9 = 1,a; = —1,
bo = —by,+1 = 1/(Mz + 1).
As for constant coefficient differential equations in th@tauous case,
without additional information or constraints a LCCDE does provide a
unique solution for the output given an input. Specificalyppose we have
the particular outpuy ,[n] for the inputx,[n]. The same equation then has the
solution

y[n] = ypln] + yaln],

whereyy[n] is any solution withx[n] = 0. That is,y[n] is anhomogeneous
solution to thehomogeneous equation

N
> agypln—k] =0.

k=0
It can be shown that there aMe nonzero solutions to this equation, so a set of

N auxiliary conditions are required for a unique specifiaawd y[n] for a
givenx|n].

If a system is LTland causalthen the initial conditions anaitial rest
conditions, and a unique solution can be obtained.

6 Freguency-domain representation of
discrete-time signals and systems

The Fourier transform considered here is strictly speathegliscrete-time
Fourier transform (DTFT) , although Oppenheim and Schafer call it just the
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Fourier transform. Its properties are recapped here (widimgles) to show
nomenclature.

Complex exponentials
x[n] = /", —00 <N < 0

are eigenfunctions of LTI systems:

yinl= Y hlkle/*¢0 :ej“’”< > h[k]e‘f“’k).

k=—00 k=—o00
Defining
o0
H(e'®) = ) hlk]e /**
k=—o00
we have thav[n] = H(e/?)e/®" = H(e/?)x[n]. Thereforeg/®" is an
eigenfunction of the system, arfl(e/*) is the associated eigenvalue.

The quantityH (e/®) is called thefrequency responseof the system, and

H(e/®) = Hg(e/®) + jH;(e/?) = |H(e/®)|e/ <HE™),

Example: frequency response of ideal delay:
Consider the input [n] = e/®" to the ideal delay systemn] = x[n — ng]:
the output is
yn] = ef@t—na) — p=jwna gjon
The frequency response is therefore

H(e/?) = ¢ /@na

Alternatively, for the ideal dela¥[n] = é[n — ny4],

o0
H(e'?) = Z §[n —ngle /°" = e~ /94,

n=—oo

The real and imaginary parts of the frequency response are

22



Hg(e’?) = coqwny) and Hy(e/?) = sin(wny), or alternatively
[H(T®)| =1
<H(e’?) = —wny.
The frequency response of a LTI system is essentially the $antontinuous

and discrete time systems. However, an important disting§ that in the
discrete case it ialwaysperiodic in frequency with a perioziz:

o0
H(ej(a)+2n))= Z h[n]e—j(w+2n)n

n=—00
o0
— Z h[n]e—ja)ne—jZnn
n=—00
w . .
= Z hlnle 7" = H(e’®).
n=—00

This last result holds sineet/27" = | for integern.

The reason for this periodicity is related to the observatiat the sequence
{e_j“’"}, —00 <N <00
has exactly the same values as the sequence
{e_j(“’+2”)”} , —00 <N < 0.

A system will therefore respond in exactly the same way tt lseguences.

Example: ideal frequency selective filters
The frequency response of an ideal lowpass filter is as fgllow

23



Only required part

Due to the periodicity in the response, it is only necessagonsider one
frequency cycle, usually chosen to be the rangeto =. Other examples of
ideal filters are:

1 th(ejw)
Highpass
T T w
—T g, 0 we T
1 Hbs(ejw)
Bandstog
T T w
1 pr(ejw)
Bandpas
T T w

In these cases it is implied that the frequency responsatepath periox
outside of the plotted interval.

Example: frequency response of the moving-average system

24



The frequency response of the moving average system

1
hin] = MM+ —My <n<M,
otherwise
IS given by
H( ja)) 1 eja)(M2+M1+1)/2 _ e—ja)(M2+M1+1)/2 _jw(Mngl—H)
e = . e
M, + M, +1 1 —e /@
1 eja)(M2+M1+1)/2 _ e_ja)(M2+M1+1)/2 _Jjo(My—M1)
= 2
My + M + 1 eJ0/2 — g=Jjw/2 ¢
1 Sin[a)(Ml + M, + 1)/2] _ja)(M%—Ml)
= _ e .
M, + M; +1 sin(w/2)

ForM; = 0 andM, = 4,

NN N

—2r —T ==

|H (e’)|

€ ot

<<{H(e’?)

This system attenuates high frequencies (at areugd), and therefore has
the behaviour of a lowpass filter.

25



7 Fourier transforms of discrete sequences

The discrete time Fourier transform (DTFT) of the sequer|aéis

(0. @]
X(e/?) = Z x[n]e=/e",
n=—o0
This is also called théorward transform or analysisequation. Thenverse
Fourier transform , or synthesisformula, is given by the Fourier integral

1 7 . .
x[n] = —/ X(e/?)e!“"dw.
21
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The Fourier transform is generally a complex-valued fuorcof w:
X(e7?) = Xp(e/®) + jX1(e/®) = | X(e7®) e/ X',

The quantitiesX (e/?)| and< X (e/?) are referred to as thmagnitude and

phaseof the Fourier transform. The Fourier transform is oftererefd to as

the Fourier spectrum.

Since the frequency response of a LTI system is given by

o0
H(e'®) = ) hlkle /**,
k=—o00
it is clear that the frequency response is equivalent to thei€r transform of
the impulse response, and the impulse response is
1 [~ o
hln] = — H(e’?)e’*"dw.
2 J_ 5

A sufficient condition for the existence of the Fourier triams of a sequence
x[n] is that it be absolutely summabl®:>> __ |x[r]| < oo. In other words,
the Fourier transform exists if the sum>. ___ |x[n]| converges. The Fourier
transform may however exist for sequences where this isnet+ a rigorous
mathematical treatment can be found in the theorgasferalised functions

26



8 Symmetry properties of the Fourier transform

Any sequence[n] can be expressed as
x[n] = xe[n] + xo[n],

wherex,[n] is conjugate symmetric(x.[n] = xJ[—n]) andx,[n] is conjugate
antisymmetric (x,[n] = —x}[—n]). These two components of the sequence
can be obtained as:

xeln] = 5 (vln] + ¥ n) = ¢ 1)
toln] = 5 (] = x*[on]) = —x{ [

If a real sequence is conjugate symmetric, then it is\@nsequence, and if
conjugate antisymmetric, then itasld.

Similarly, the Fourier transfornX (e/®) can be decomposed into a sum of
conjugate symmetric and antisymmetric parts:

X(e?) = Xe(7®) + Xo(e’?),
where
Xe(el®) = S[X(@) + X* ()
Xo(e1®) = X (/%) = X* ()]
With these definitions, and letting
X(e7?) = Xp(e’®) + jX1(e’®),

the symmetry properties of the Fourier transform can be samsed as
follows:

27



Sequence[n] TransformX(e/®)

x*[n] X*(e™7®)
x*[—n] X*(e’®)
Re{x[n]} Xe(e’?)
JIm{x[n]} Xo(e/®)
xe[n] Xr(e®)
Xo[n] JX1(e’®)

Most of these properties can be proved by substituting meaekpression for
the Fourier transform. Additionally, for realn] the following also hold:

Real sequence[n] TransformX (/%)

x[n] X(e/?) = X*(e™/*)
x[n] Xr(e/?) = Xg(e™7®)
x[n] X7(e/®) = —Xy(e™7®)
x[n] | X(e/®)| = |X(e™7?)|
x[n] <X(e?) = —X(e77?)
xe[n] XRr(e’®)

Xo[n] JX1(e?®)

O Fourier transform theorems

Let X(e/?) be the Fourier transform of[z]. The following theorems then
apply:
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Sequences(n], y[n] TransformsX(e/®), Y(e/?) Property

ax[n] + by|n] aX(e’®) + bY (e’?) Linearity
x[n —ng] e~/ond X (o) Time shift
e/0" x[n] X (e/(@=®0))y Frequency shift
x[—n] X(e77®) Time reversal
nx[n| j % Frequency diff.
x[n] * y[n] X(e7/®)Y (e /®) Convolution
x[n]y[n] L [T X(e/0)Y(e/@)db Modulation

Some useful Fourier transform pairs are:

Sequence Fourier transform
o[n] 1
8[n —no] e J@ono
1 (—o0<n < o0) Y e oo 2m8(w + 27k)
a"uln] (la] <1) — a; —
un] — ,w + Yt oo T8 (@ + 27k)
(n + Da"uln] (la| < 1) m
: : lw| < w
S'ng"—rf") e = 0 we < |lw| <w
x[n] = O=n=M S 1/2] oM 2
0 otherwise

eJ@on Y e oo 2m8(w — wo + 27k)
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