Discrete-time signals and systems

See Oppenheim and Schafer, Second Edition pages 8-93, or First Edition pages 8-79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of numbers:

$$
x=\{x[n]\}, \quad-\infty<n<\infty .
$$

Here n is an integer, and $x[n]$ is the nth sample in the sequence.
Discrete-time signals are often obtained by sampling continuous-time signals. In this case the nth sample of the sequence is equal to the value of the analogue signal $x_{a}(t)$ at time $t=n T$:

$$
x[n]=x_{a}(n T), \quad-\infty<n<\infty .
$$

The sampling period is then equal to T, and the sampling frequency is $f_{s}=1 / T$.

For this reason, although $x[n]$ is strictly the nth number in the sequence, we often refer to it as the nth sample. We also often refer to "the sequence $x[n]$ " when we mean the entire sequence.

Discrete-time signals are often depicted graphically as follows:

(This can be plotted using the MATLAB function stem.) The value $x[n]$ is undefined for noninteger values of n.

Sequences can be manipulated in several ways. The sum and product of two sequences $x[n]$ and $y[n]$ are defined as the sample-by-sample sum and product respectively. Multiplication of $x[n]$ by a is defined as the multiplication of each sample value by a.

A sequence $y[n]$ is a delayed or shifted version of $x[n]$ if

$$
y[n]=x\left[n-n_{0}\right],
$$

with n_{0} an integer.

The unit sample sequence

is defined as

$$
\delta[n]= \begin{cases}0 & n \neq 0 \\ 1 & n=0\end{cases}
$$

This sequence is often referred to as a discrete-time impulse, or just impulse. It plays the same role for discrete-time signals as the Dirac delta function does for continuous-time signals. However, there are no mathematical
complications in its definition.
An important aspect of the impulse sequence is that an arbitrary sequence can be represented as a sum of scaled, delayed impulses. For example, the sequence

can be represented as

$$
\begin{aligned}
x[n]=a_{-4} \delta[n+4] & +a_{-3} \delta[n+3]+a_{-2} \delta[n+2]+a_{-1} \delta[n+1]+a_{0} \delta[n] \\
& +a_{1} \delta[n-1]+a_{2} \delta[n-2]+a_{3} \delta[n-3]+a_{4} \delta[n-4] .
\end{aligned}
$$

In general, any sequence can be expressed as

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

The unit step sequence

is defined as

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

The unit step is related to the impulse by

$$
u[n]=\sum_{k=-\infty}^{n} \delta[k]
$$

Alternatively, this can be expressed as

$$
u[n]=\delta[n]+\delta[n-1]+\delta[n-2]+\cdots=\sum_{k=0}^{\infty} \delta[n-k]
$$

Conversely, the unit sample sequence can be expressed as the first backward difference of the unit step sequence

$$
\delta[n]=u[n]-u[n-1] .
$$

Exponential sequences are important for analysing and representing discrete-time systems. The general form is

$$
x[n]=A \alpha^{n} .
$$

If A and α are real numbers then the sequence is real. If $0<\alpha<1$ and A is positive, then the sequence values are positive and decrease with increasing n :

For $-1<\alpha<0$ the sequence alternates in sign, but decreases in magnitude. For $|\alpha|>1$ the sequence grows in magnitude as n increases.

A sinusoidal sequence

has the form

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right) \quad \text { for all } n
$$

with A and ϕ real constants. The exponential sequence $A \alpha^{n}$ with complex $\alpha=|\alpha| e^{j \omega_{0}}$ and $A=|A| e^{j \phi}$ can be expressed as

$$
\begin{aligned}
x[n]=A \alpha^{n} & =|A| e^{j \phi}|\alpha|^{n} e^{j \omega_{0} n}=|A||\alpha|^{n} e^{j\left(\omega_{0} n+\phi\right)} \\
& =|A||\alpha|^{n} \cos \left(\omega_{0} n+\phi\right)+j|A||\alpha|^{n} \sin \left(\omega_{0} n+\phi\right)
\end{aligned}
$$

so the real and imaginary parts are exponentially weighted sinusoids.
When $|\alpha|=1$ the sequence is called the complex exponential sequence:

$$
x[n]=|A| e^{j\left(\omega_{0} n+\phi\right)}=|A| \cos \left(\omega_{0} n+\phi\right)+j|A| \sin \left(\omega_{0} n+\phi\right)
$$

The frequency of this complex sinusoid is ω_{0}, and is measured in radians per sample. The phase of the signal is ϕ.

The index n is always an integer. This leads to some important differences between the properties of discrete-time and continuous-time complex exponentials:

- Consider the complex exponential with frequency $\left(\omega_{0}+2 \pi\right)$:

$$
x[n]=A e^{j\left(\omega_{0}+2 \pi\right) n}=A e^{j \omega_{0} n} e^{j 2 \pi n}=A e^{j \omega_{0} n}
$$

Thus the sequence for the complex exponential with frequency ω_{0} is exactly the same as that for the complex exponential with frequency $\left(\omega_{0}+2 \pi\right)$. More generally, complex exponential sequences with frequencies $\left(\omega_{0}+2 \pi r\right)$, where r is an integer, are indistinguishable from one another. Similarly, for sinusoidal sequences

$$
x[n]=A \cos \left[\left(\omega_{0}+2 \pi r\right) n+\phi\right]=A \cos \left(\omega_{0} n+\phi\right)
$$

- In the continuous-time case, sinusoidal and complex exponential sequences are always periodic. Discrete-time sequences are periodic (with period N) if

$$
x[n]=x[n+N] \quad \text { for all } n
$$

Thus the discrete-time sinusoid is only periodic if

$$
A \cos \left(\omega_{0} n+\phi\right)=A \cos \left(\omega_{0} n+\omega_{0} N+\phi\right)
$$

which requires that

$$
\omega_{0} N=2 \pi k \quad \text { for } k \text { an integer. }
$$

The same condition is required for the complex exponential sequence $C e^{j \omega_{0} n}$ to be periodic.

The two factors just described can be combined to reach the conclusion that there are only N distinguishable frequencies for which the corresponding sequences are periodic with period N. One such set is

$$
\omega_{k}=\frac{2 \pi k}{N}, \quad k=0,1, \ldots, N-1
$$

Additionally, for discrete-time sequences the interpretation of high and low frequencies has to be modified: the discrete-time sinusoidal sequence $x[n]=A \cos \left(\omega_{0} n+\phi\right)$ oscillates more rapidly as ω_{0} increases from 0 to π, but the oscillations become slower as it increases further from π to 2π.

The sequence corresponding to $\omega_{0}=0$ is indistinguishable from that with $\omega_{0}=2 \pi$. In general, any frequencies in the vicinity of $\omega_{0}=2 \pi k$ for integer k are typically referred to as low frequencies, and those in the vicinity of $\omega_{0}=(\pi+2 \pi k)$ are high frequencies.

2 Discrete-time systems

A discrete-time system is defined as a transformation or mapping operator that maps an input signal $x[n]$ to an output signal $y[n]$. This can be denoted as

Example: Ideal delay

$$
y[n]=x\left[n-n_{d}\right]:
$$

This operation shifts input sequence later by n_{d} samples.

Example: Moving average

$$
y[n]=\frac{1}{M_{1}+M_{2}+1} \sum_{k=-M_{1}}^{M_{2}} x[n-k]
$$

For $M_{1}=1$ and $M_{2}=1$, the input sequence

yields an output with

$$
\begin{aligned}
& y[2]=\frac{1}{3}(x[1]+x[2]+x[3]) \\
& y[3]=\frac{1}{3}(x[2]+x[3]+x[4])
\end{aligned}
$$

In general, systems can be classified by placing constraints on the transformation $T\{\cdot\}$.

2.1 Memoryless systems

A system is memoryless if the output $y[n]$ depends only on $x[n]$ at the same n. For example, $y[n]=(x[n])^{2}$ is memoryless, but the ideal delay
$y[n]=x\left[n-n_{d}\right]$ is not unless $n_{d}=0$.

2.2 Linear systems

A system is linear if the principle of superposition applies. Thus if $y_{1}[n]$ is the response of the system to the input $x_{1}[n]$, and $y_{2}[n]$ the response to $x_{2}[n]$, then linearity implies

- Additivity:

$$
T\left\{x_{1}[n]+x_{2}[n]\right\}=T\left\{x_{1}[n]\right\}+T\left\{x_{2}[n]\right\}=y_{1}[n]+y_{2}[n]
$$

- Scaling:

$$
T\left\{a x_{1}[n]\right\}=a T\left\{x_{1}[n]\right\}=a y_{1}[n] .
$$

These properties combine to form the general principle of superposition

$$
T\left\{a x_{1}[n]+b x_{2}[n]\right\}=a T\left\{x_{1}[n]\right\}+b T\left\{x_{2}[n]\right\}=a y_{1}[n]+b y_{2}[n] .
$$

In all cases a and b are arbitrary constants.
This property generalises to many inputs, so the response of a linear system to $x[n]=\sum_{k} a_{k} x_{k}[n]$ will be $y[n]=\sum_{k} a_{k} y_{k}[n]$.

2.3 Time-invariant systems

A system is time invariant if a time shift or delay of the input sequence causes a corresponding shift in the output sequence. That is, if $y[n]$ is the response to $x[n]$, then $y\left[n-n_{0}\right]$ is the response to $x\left[n-n_{0}\right]$.

For example, the accumulator system

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

is time invariant, but the compressor system

$$
y[n]=x[M n]
$$

for M a positive integer (which selects every M th sample from a sequence) is not.

2.4 Causality

A system is causal if the output at n depends only on the input at n and earlier inputs.

For example, the backward difference system

$$
y[n]=x[n]-x[n-1]
$$

is causal, but the forward difference system

$$
y[n]=x[n+1]-x[n]
$$

is not.

2.5 Stability

A system is stable if every bounded input sequence produces a bounded output sequence:

- Bounded input: $|x[n]| \leq B_{x}<\infty$
- Bounded output: $|y[n]| \leq B_{y}<\infty$.

For example, the accumulator

$$
y[n]=\sum_{k=-\infty}^{n} x[n]
$$

is an example of an unbounded system, since its response to the unit step $u[n]$ is

$$
y[n]=\sum_{k=-\infty}^{n} u[n]= \begin{cases}0 & n<0 \\ n+1 & n \geq 0\end{cases}
$$

which has no finite upper bound.

3 Linear time-invariant systems

If the linearity property is combined with the representation of a general sequence as a linear combination of delayed impulses, then it follows that a linear time-invariant (LTI) system can be completely characterised by its impulse response.

Suppose $h_{k}[n]$ is the response of a linear system to the impulse $\delta[n-k]$ at $n=k$. Since

$$
y[n]=T\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\},
$$

the principle of superposition means that

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] T\{\delta[n-k]\}=\sum_{k=-\infty}^{\infty} x[k] h_{k}[n] .
$$

If the system is additionally time invariant, then the response to $\delta[n-k]$ is $h[n-k]$. The previous equation then becomes

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] .
$$

This expression is called the convolution sum. Therefore, a LTI system has the property that given $h[n]$, we can find $y[n]$ for any input $x[n]$. Alternatively, $y[n]$ is the convolution of $x[n]$ with $h[n]$, denoted as follows:

$$
y[n]=x[n] * h[n] .
$$

The previous derivation suggests the interpretation that the input sample at $n=k$, represented by $x[k] \delta[n-k]$, is transformed by the system into an output sequence $x[k] h[n-k]$. For each k, these sequences are superimposed to yield the overall output sequence:

$x[1] \delta[n-1]$

A slightly different interpretation, however, leads to a convenient computational form: the nth value of the output, namely $y[n]$, is obtained by multiplying the input sequence (expressed as a function of k) by the sequence with values $h[n-k]$, and then summing all the values of the products $x[k] h[n-k]$. The key to this method is in understanding how to form the sequence $h[n-k]$ for all values of n of interest.

To this end, note that $h[n-k]=h[-(k-n)]$. The sequence $h[-k]$ is seen to be equivalent to the sequence $h[k]$ reflected around the origin:

The sequence $h[n-k]$ is then obtained by shifting the origin of the sequence to $k=n$.

To implement discrete-time convolution, the sequences $x[k]$ and $h[n-k]$ are multiplied together for $-\infty<k<\infty$, and the products summed to obtain the value of the output sample $y[n]$. To obtain another output sample, the procedure is repeated with the origin shifted to the new sample position.

Example: analytical evaluation of the convolution sum

Consider the output of a system with impulse response

$$
h[n]= \begin{cases}1 & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

to the input $x[n]=a^{n} u[n]$. To find the output at n, we must form the sum over all k of the product $x[k] h[n-k]$.

Since the sequences are non-overlapping for all negative n, the output must be zero:

$$
y[n]=0, \quad n<0 .
$$

For $0 \leq n \leq N-1$ the product terms in the sum are $x[k] h[n-k]=a^{k}$, so it follows that

$$
y[n]=\sum_{k=0}^{n} a^{k}, \quad 0 \leq n \leq N-1 .
$$

Finally, for $n>N-1$ the product terms are $x[k] h[n-k]=a^{k}$ as before, but the lower limit on the sum is now $n-N+1$. Therefore

$$
y[n]=\sum_{k=n-N+1}^{n} a^{k}, \quad n>N-1 .
$$

4 Properties of LTI systems

All LTI systems are described by the convolution sum

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] .
$$

Some properties of LTI systems can therefore be found by considering the properties of the convolution operation:

- Commutative: $x[n] * h[n]=h[n] * x[n]$
- Distributive over addition:

$$
x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n] .
$$

- Cascade connection:

$y[n]=h[n] * x[n]=h_{1}[n] * h_{2}[n] * x[n]=h_{2}[n] * h_{1}[n] * x[n]$.
- Parallel connection:

$y[n]=\left(h_{1}[n]+h_{2}[n]\right) * x[n]=h_{p}[n] * x[n]$.
Additional important properties are:
- A LTI system is stable if and only if $S=\sum_{k=-\infty}^{\infty}|h[k]|<\infty$. The ideal
delay system $h[n]=\delta\left[n-n_{d}\right]$ is stable since $S=1<\infty$; the moving average system

$$
\begin{aligned}
h[n] & =\frac{1}{M_{1}+M_{2}+1} \sum_{k=-M_{1}}^{M_{2}} \delta[n-k] \\
& = \begin{cases}\frac{1}{M_{1}+M_{2}+1} & -M_{1} \leq n \leq M_{2} \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

the forward difference system $h[n]=\delta[n+1]-\delta[n]$, and the backward difference system $h[n]=\delta[n]-\delta[n-1]$ are stable since S is the sum of a finite number of finite samples, and is therefore less than ∞; the accumulator system

$$
\begin{aligned}
h[n] & =\sum_{k=-\infty}^{n} \delta[k] \\
& = \begin{cases}1 & n \geq 0 \\
0 & n<0\end{cases} \\
& =u[n]
\end{aligned}
$$

is unstable since $S=\sum_{n=0}^{\infty} u[n]=\infty$.

- A LTI system is causal if and only if $h[n]=0$ for $n<0$. The ideal delay system is causal if $n_{d} \geq 0$; the moving average system is causal if $-M_{1} \geq 0$ and $M_{2} \geq 0$; the accumulator and backward difference systems are causal; the forward difference system is noncausal.

Systems with only a finite number of nonzero values in $h[n]$ are called Finite duration impulse response (FIR) systems. FIR systems are stable if each impulse response value is finite. The ideal delay, the moving average, and the forward and backward difference described above fall into this class. Infinite impulse response (IIR) systems, such as the accumulator system, are more difficult to analyse. For example, the accumulator system is unstable, but the

IIR system

$$
h[n]=a^{n} u[n], \quad|a|<1
$$

is stable since

$$
S=\sum_{n=0}^{\infty}\left|a^{n}\right| \leq \sum_{n=0}^{\infty}|a|^{n}=\frac{1}{1-|a|}<\infty
$$

(it is the sum of an infinite geometric series).
Consider the system

which has

$$
\begin{aligned}
h[n] & =(\delta[n+1]-\delta[n]) * \delta[n-1] \\
& =\delta[n-1] * \delta[n+1]-\delta[n-1] * \delta[n] \\
& =\delta[n]-\delta[n-1]
\end{aligned}
$$

This is the impulse response of a backward difference system:

Here a non-causal system has been converted to a causal one by cascading with a delay. In general, any non-causal FIR system can be made causal by cascading with a sufficiently long delay.

Consider the system consisting of an accumulator followed by a backward difference:

The impulse response of this system is

$$
h[n]=u[n] *(\delta[n]-\delta[n-1])=u[n]-u[n-1]=\delta[n] .
$$

The output is therefore equal to the input because $x[n] * \delta[n]=x[n]$. Thus the backward difference exactly compensates for (or inverts) the effect of the accumulator - the backward difference system is the inverse system for the accumulator, and vice versa. We define this inverse relationship for all LTI systems:

$$
h[n] * h_{i}[n]=\delta[n] .
$$

5 Linear constant coefficient difference equations

Some LTI systems can be represented in terms of linear constant coefficient difference (LCCD) equations

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m]
$$

Example: difference equation representation of the accumulator

Take for example the accumulator

Here $y[n]-y[n-1]=x[n]$, which can be written in the desired form with $N=1, a_{0}=1, a_{1}=-1, M=0$, and $b_{0}=1$. Rewriting as

$$
y[n]=y[n-1]+x[n]
$$

we obtain the recursion representation

where at n we add the current input $x[n]$ to the previously accumulated sum $y[n-1]$.

Example: difference equation representation of moving average

Consider now the moving average system with $M_{1}=0$:

$$
h[n]=\frac{1}{M_{2}+1}\left(u[n]-u\left[n-M_{2}-1\right]\right) .
$$

The output of the system is

$$
y[n]=\frac{1}{M_{2}+1} \sum_{k=0}^{M_{2}} x[n-k],
$$

which is a LCCDE with $N=0, a_{0}=1$, and $M=M_{2}, b_{k}=1 /\left(M_{2}+1\right)$. Using the sifting property of $\delta[n]$,

$$
h[n]=\frac{1}{M_{2}+1}\left(\delta[n]-\delta\left[n-M_{2}-1\right]\right) * u[n]
$$

so

Here $x_{1}[n]=1 /\left(M_{2}+1\right)\left(x[n]-x\left[n-M_{2}-1\right]\right)$ and for the accumulator $y[n]-y[n-1]=x_{1}[n]$. Therefore

$$
y[n]-y[n-1]=\frac{1}{M_{2}+1}\left(x[n]-x\left[n-M_{2}-1\right]\right),
$$

which is again a (different) LCCD equation with $N=1, a_{0}=1, a_{1}=-1$, $b_{0}=-b_{M_{2}+1}=1 /\left(M_{2}+1\right)$.

As for constant coefficient differential equations in the continuous case, without additional information or constraints a LCCDE does not provide a unique solution for the output given an input. Specifically, suppose we have the particular output $y_{p}[n]$ for the input $x_{p}[n]$. The same equation then has the solution

$$
y[n]=y_{p}[n]+y_{h}[n],
$$

where $y_{h}[n]$ is any solution with $x[n]=0$. That is, $y_{h}[n]$ is an homogeneous solution to the homogeneous equation

$$
\sum_{k=0}^{N} a_{k} y_{h}[n-k]=0
$$

It can be shown that there are N nonzero solutions to this equation, so a set of N auxiliary conditions are required for a unique specification of $y[n]$ for a given $x[n]$.

If a system is LTI and causal, then the initial conditions are initial rest conditions, and a unique solution can be obtained.

6 Frequency-domain representation of discrete-time signals and systems

The Fourier transform considered here is strictly speaking the discrete-time Fourier transform (DTFT), although Oppenheim and Schafer call it just the

Fourier transform. Its properties are recapped here (with examples) to show nomenclature.

Complex exponentials

$$
x[n]=e^{j \omega n}, \quad-\infty<n<\infty
$$

are eigenfunctions of LTI systems:

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] e^{j \omega(n-k)}=e^{j \omega n}\left(\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}\right) .
$$

Defining

$$
H\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}
$$

we have that $y[n]=H\left(e^{j \omega}\right) e^{j \omega n}=H\left(e^{j \omega}\right) x[n]$. Therefore, $e^{j \omega n}$ is an eigenfunction of the system, and $H\left(e^{j \omega}\right)$ is the associated eigenvalue.

The quantity $H\left(e^{j \omega}\right)$ is called the frequency response of the system, and

$$
\left.H\left(e^{j \omega}\right)=H_{R}\left(e^{j \omega}\right)+j H_{I}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right| e^{j \varangle H\left(e^{j \omega}\right)}\right) .
$$

Example: frequency response of ideal delay:

Consider the input $x[n]=e^{j \omega n}$ to the ideal delay system $y[n]=x\left[n-n_{d}\right]$: the output is

$$
y[n]=e^{j \omega\left(n-n_{d}\right)}=e^{-j \omega n_{d}} e^{j \omega n} .
$$

The frequency response is therefore

$$
H\left(e^{j \omega}\right)=e^{-j \omega n_{d}} .
$$

Alternatively, for the ideal delay $h[n]=\delta\left[n-n_{d}\right]$,

$$
H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} \delta\left[n-n_{d}\right] e^{-j \omega n}=e^{-j \omega n_{d}} .
$$

The real and imaginary parts of the frequency response are
$H_{R}\left(e^{j \omega}\right)=\cos \left(\omega n_{d}\right)$ and $H_{I}\left(e^{j \omega}\right)=\sin \left(\omega n_{d}\right)$, or alternatively

$$
\begin{gathered}
\left|H\left(e^{j \omega}\right)\right|=1 \\
\varangle H\left(e^{j \omega}\right)=-\omega n_{d} .
\end{gathered}
$$

The frequency response of a LTI system is essentially the same for continuous and discrete time systems. However, an important distinction is that in the discrete case it is always periodic in frequency with a period 2π :

$$
\begin{aligned}
H\left(e^{j(\omega+2 \pi)}\right) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j(\omega+2 \pi) n} \\
& =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} e^{-j 2 \pi n} \\
& =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n}=H\left(e^{j \omega}\right)
\end{aligned}
$$

This last result holds since $e^{ \pm j 2 \pi n}=1$ for integer n.
The reason for this periodicity is related to the observation that the sequence

$$
\left\{e^{-j \omega n}\right\}, \quad-\infty<n<\infty
$$

has exactly the same values as the sequence

$$
\left\{e^{-j(\omega+2 \pi) n}\right\}, \quad-\infty<n<\infty
$$

A system will therefore respond in exactly the same way to both sequences.

Example: ideal frequency selective filters

The frequency response of an ideal lowpass filter is as follows:

Due to the periodicity in the response, it is only necessary to consider one frequency cycle, usually chosen to be the range $-\pi$ to π. Other examples of ideal filters are:

In these cases it is implied that the frequency response repeats with period 2π outside of the plotted interval.

Example: frequency response of the moving-average system

The frequency response of the moving average system

$$
h[n]= \begin{cases}\frac{1}{M_{1}+M_{2}+1} & -M_{1} \leq n \leq M_{2} \\ 0 & \text { otherwise }\end{cases}
$$

is given by

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\frac{1}{M_{1}+M_{2}+1} \frac{e^{j \omega\left(M_{2}+M_{1}+1\right) / 2}-e^{-j \omega\left(M_{2}+M_{1}+1\right) / 2}}{1-e^{-j \omega}} e^{-\frac{j \omega\left(M_{2}-M_{1}+1\right)}{2}} \\
& =\frac{1}{M_{1}+M_{2}+1} \frac{e^{j \omega\left(M_{2}+M_{1}+1\right) / 2}-e^{-j \omega\left(M_{2}+M_{1}+1\right) / 2}}{e^{j \omega / 2}-e^{-j \omega / 2}} e^{-\frac{j \omega\left(M_{2}-M_{1}\right)}{2}} \\
& =\frac{1}{M_{1}+M_{2}+1} \frac{\sin \left[\omega\left(M_{1}+M_{2}+1\right) / 2\right]}{\sin (\omega / 2)} e^{-\frac{j \omega\left(M_{2}-M_{1}\right)}{2}}
\end{aligned}
$$

For $M_{1}=0$ and $M_{2}=4$,

This system attenuates high frequencies (at around $\omega=\pi$), and therefore has the behaviour of a lowpass filter.

7 Fourier transforms of discrete sequences

The discrete time Fourier transform (DTFT) of the sequence $x[n]$ is

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} .
$$

This is also called the forward transform or analysis equation. The inverse Fourier transform, or synthesis formula, is given by the Fourier integral

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega .
$$

The Fourier transform is generally a complex-valued function of ω :

$$
X\left(e^{j \omega}\right)=X_{R}\left(e^{j \omega}\right)+j X_{I}\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| e^{j \varangle X\left(e^{j \omega}\right)}
$$

The quantities $\left|X\left(e^{j \omega}\right)\right|$ and $\varangle X\left(e^{j \omega}\right)$ are referred to as the magnitude and phase of the Fourier transform. The Fourier transform is often referred to as the Fourier spectrum.

Since the frequency response of a LTI system is given by

$$
H\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}
$$

it is clear that the frequency response is equivalent to the Fourier transform of the impulse response, and the impulse response is

$$
h[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega .
$$

A sufficient condition for the existence of the Fourier transform of a sequence $x[n]$ is that it be absolutely summable: $\sum_{n=-\infty}^{\infty}|x[n]|<\infty$. In other words, the Fourier transform exists if the sum $\sum_{n=-\infty}^{\infty}|x[n]|$ converges. The Fourier transform may however exist for sequences where this is not true - a rigorous mathematical treatment can be found in the theory of generalised functions.

8 Symmetry properties of the Fourier transform

Any sequence $x[n]$ can be expressed as

$$
x[n]=x_{e}[n]+x_{o}[n],
$$

where $x_{e}[n]$ is conjugate symmetric $\left(x_{e}[n]=x_{e}^{*}[-n]\right)$ and $x_{o}[n]$ is conjugate antisymmetric $\left(x_{o}[n]=-x_{o}^{*}[-n]\right)$. These two components of the sequence can be obtained as:

$$
\begin{gathered}
x_{e}[n]=\frac{1}{2}\left(x[n]+x^{*}[-n]\right)=x_{e}^{*}[-n] \\
x_{o}[n]=\frac{1}{2}\left(x[n]-x^{*}[-n]\right)=-x_{o}^{*}[-n] .
\end{gathered}
$$

If a real sequence is conjugate symmetric, then it is an even sequence, and if conjugate antisymmetric, then it is odd.

Similarly, the Fourier transform $X\left(e^{j \omega}\right)$ can be decomposed into a sum of conjugate symmetric and antisymmetric parts:

$$
X\left(e^{j \omega}\right)=X_{e}\left(e^{j \omega}\right)+X_{o}\left(e^{j \omega}\right),
$$

where

$$
\begin{aligned}
X_{e}\left(e^{j \omega}\right) & =\frac{1}{2}\left[X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right] \\
X_{o}\left(e^{j \omega}\right) & =\frac{1}{2}\left[X\left(e^{j \omega}\right)-X^{*}\left(e^{-j \omega}\right)\right] .
\end{aligned}
$$

With these definitions, and letting

$$
X\left(e^{j \omega}\right)=X_{R}\left(e^{j \omega}\right)+j X_{I}\left(e^{j \omega}\right),
$$

the symmetry properties of the Fourier transform can be summarised as follows:

Sequence $x[n]$	Transform $X\left(e^{j \omega}\right)$
$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
$x^{*}[-n]$	$X^{*}\left(e^{j \omega}\right)$
$\operatorname{Re}\{x[n]\}$	$X_{e}\left(e^{j \omega}\right)$
$j \operatorname{Im}\{x[n]\}$	$X_{o}\left(e^{j \omega}\right)$
$x_{e}[n]$	$X_{R}\left(e^{j \omega}\right)$
$x_{o}[n]$	$j X_{I}\left(e^{j \omega}\right)$

Most of these properties can be proved by substituting into the expression for the Fourier transform. Additionally, for real $x[n]$ the following also hold:

Real sequence $x[n]$	Transform $X\left(e^{j \omega}\right)$
$x[n]$	$X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right)$
$x[n]$	$X_{R}\left(e^{j \omega}\right)=X_{R}\left(e^{-j \omega}\right)$
$x[n]$	$X_{I}\left(e^{j \omega}\right)=-X_{I}\left(e^{-j \omega}\right)$
$x[n]$	$\left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\|$
$x[n]$	$\varangle X\left(e^{j \omega}\right)=-\varangle X\left(e^{-j \omega}\right)$
$x_{e}[n]$	$X_{R}\left(e^{j \omega}\right)$
$x_{o}[n]$	$j X_{I}\left(e^{j \omega}\right)$

9 Fourier transform theorems

Let $X\left(e^{j \omega}\right)$ be the Fourier transform of $x[n]$. The following theorems then apply:

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d}} X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Some useful Fourier transform pairs are:

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$\begin{gathered} u[n] \\ (n+1) a^{n} u[n] \quad(\|a\|<1) \end{gathered}$	$\begin{gathered} \frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k) \\ \frac{1}{\left(1-a e^{-j \omega}\right)^{2}} \end{gathered}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

