The z-transform

See Oppenheim and Schafer, Second Edition pages 94—-138stdEdition
pages 149-201.

1 Introduction

The z-transform of a sequencér] is

n—=——oo

The z-transform can also be thought of as an opet&fo} that transforms a
sequence to a function:

[e.@)

Z{z[n]y = ) znlz " = X(2).

n=—oo

In both cases is a continuous complex variable.

We may obtain the Fourier transform from the z-transform akimg the
substitutionz = e/“. This corresponds to restricting| = 1. Also, with
2z = relv,

[e.@) oo

X(relv) = Z z[n](re?*)™" = Z (z[n]r—™) e Iwn,

n=—oo n=—oo

That is, the z-transform is the Fourier transform of the segex|n|r~". For
r = 1 this becomes the Fourier transformagf.]. The Fourier transform
therefore corresponds to the z-transform evaluated onrtieitcle:
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The inherent periodicity in frequency of the Fourier tramsf is captured
naturally under this interpretation.

The Fourier transform does not converge for all sequencese-nfinite sum
may not always be finite. Similarly, the z-transform doesawtverge for all
sequences or for all values of The set of values of for which the
z-transform converges is called tregion of convergence (ROC)

oo

The Fourier transform of[n] exists if the sund_ "~ __|z[n]| converges.
However, the z-transform af[n] is just the Fourier transform of the sequence
x[n|r~". The z-transform therefore exists (or converges) if

[e.@)

X(z) = Z |z[n]r™"| < oo,
This leads to the condition
> zn]llz] " < oo

for the existence of the z-transform. The ROC thereforeistaef a ring in
the z-plane:
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In specific cases the inner radius of this ring may includeotigin, and the
outer radius may extend to infinity. If the ROC includes thé aincle |z| = 1,
then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

P(z)

Q(z)’

whereP(z) andQ(z) are polynomials irz. The values ot for which
P(z) = 0 are called theerosof X (z), and the values witl))(z) = 0 are

called thepoles The zeros and poles completely speckfyz) to within a
multiplicative constant.

X(z) =

Example: right-sided exponential sequence
Consider the signat[n| = a"u[n]. This has the z-transform

X(z) = Z a"u[n|z"" = Z(az_l)".

Convergence requires that

(e.@)
Z laz™|" < oo,
n=0

which is only the case ifuz~!| < 1, or equivalentlyjz| > |a|. In the ROC, the



series converges to

X)) =Y (o= =2 s>,

1l —az— zZ—a
n=0

since it is just a geometric series. The z-transform hasiameyg convergence
for any finite value of..
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The Fourier transform of[n] only exists if the ROC includes the unit circle,
which requires thafiu| < 1. On the other hand, it:| > 1 then the ROC does
not include the unit circle, and the Fourier transform daatsexist. This is
consistent with the fact that for these values diie sequence”u[n] is
exponentially growing, and the sum therefore does not ageve

Example: left-sided exponential sequence

Now consider the sequeneén] = —a"u[—n — 1]. This sequence is left-sided
because it is nonzero only far< —1. The z-transform is

o0 —1

X(z) = Z —a"ul-n—1]z7" = — Z a"z™"

n—=——oo n=——oo

(0 @]

= — i a "zt =1— Z(a_lz)”.
n=1

n=0



For|a—'z| < 1, or|z| < |al, the series converges to

1 1 z
X() l—a1lz 1-—az! z-a’ 2l < al
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Note that the expression for the z-transform (and the paile et) is exactly
the same as for the right-handed exponential sequenogly-the region of
convergence is different. Specifying the ROC is therefore critical when dealing
with the z-transform.

Example: sum of two exponentials
The signate[n] = ()" u[n] + (—%)" u[n] is the sum of two real
exponentials. The z-transform is

X(z) = nioo { (%)n uln] + (—é)n u[n]} o

(e.@)

1\" L 1\" n
= n_z_:oo <§> u[n)z=" 4+ Z <—§> uln]z
oo 1 . n o 1 . n
= nZ:O <§z ) + T;O <_§Z ) :
From the example for the right-handed exponential sequéinedirst term in
this sum converges fge| > 1/2, and the second fge| > 1/3. The combined
transformX (z) therefore converges in the intersection of these regions,



namely wherjz| > 1/2. In this case

1 4 1 22(z — &)
1—2270 142271 (z-L)(z+3)

The pole-zero plot and region of convergence of the signal is
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Example: finite length sequence
The signal
a™ 0<n<N-1
zn] = .
0 otherwise
has z-transform
N—-1 N-—-1
X(z) = Z a"z"
n=0 n:O
1= (az"H)N 1 2N —aV
T T 1_az 1  N-1 g

Since there are only a finite number of nonzero terms the swayal
converges whenz ! is finite. There are no restrictions arn(|a| < oc), and

the ROC is the entire z-plane with the exception of the ortgia 0 (where the
terms in the sum are infinite). Th€ roots of the numerator polynomial are at

2p = ae? TR/N), k=0,1,...,N — 1,



since these values satisfy the equatidh= «. The zero at = 0 cancels the
pole atz = a, So there are no poles except at the origin, and the zeros$ are a

2 = ae? CTR/IN) k=1,...,N —1.

2 Properties of the region of convergence

The properties of the ROC depend on the nature of the sigrsauing that
the signal has a finite amplitude and that the z-transformragianal function:

e The ROC is aring or disk in the z-plane, centered on the origin
(0<rgp<|z| <rp < x).

e The Fourier transform of[n] converges absolutely if and only if the ROC
of the z-transform includes the unit circle.

e The ROC cannot contain any poles.

e If x[n] is finite duration (ie. zero except on finite interval
—o0 < N1 <n < Ny < 00), then the ROC is the entire z-plane except
perhaps at = 0 or z = .

e If z[n] is aright-sided sequence then the ROC extends outward frem t
outermost finite pole to infinity.

e If x[n] is left-sided then the ROC extends inward from the innermost
nonzero pole ta = 0.

e A two-sided sequence (neither left nor right-sided) has &R0Onsisting
of aring in the z-plane, bounded on the interior and extdrjoa pole (and
not containing any poles).

e The ROC is a connected region.



3 The inverse z-transform

Formally, the inverse z-transform can be performed by etalg a Cauchy
integral. However, for discrete LTI systems simpler methark often
sufficient.

3.1 Inspection method

If one is familiar with (or has a table of) common z-transfgrairs, the inverse
can be found by inspection. For example, one can invert tin@rsform

1 1
X6 = (=) K>3

2
using the z-transform pair

z 1
a™ul[n)« P for |z| > |al.

By inspection we recognise that

2[n] = (%)nu[n].

Also, if X (z) is a sum of terms then one may be able to do a term-by-term
inversion by inspection, yielding[n| as a sum of terms.

3.2 Partial fraction expansion

For any rational function we can obtain a partial fractiopaxsion, and
identify the z-transform of each term. Assume th@dt:) is expressed as a ratio
of polynomials inz—1!:

M —k
b
X(Z) _ Zk:o k<

__EiﬁloakZ‘k.




It is always possible to factoX (z) as

bo TTiey (1 — cez™h)
X(z) = — ,
(2) ao [Tr_, (1 — dpz=1)

where the:;’'s anddy’s are the nonzero zeros and polesfz).

e If M < N and the poles are all first order, th&i(z) can be expressed as

A
X@=> g

k=1

In this case the coefficient$; are given by

A = (1 — dkz_l)X(z)‘

e If M > N and the poles are all first order, then an expansion of the form

M—N N A
—r k
r=0 k=1

can be used, and the,’s be obtained by long division of the numerator
by the denominator. Thd,’'s can be obtained using the same equation as
for M < N.

e The most general form for the partial fraction expansionicvitan also
deal with multiple-order poles, is

X=X B Y ey
o r _ -1 —d.—1ym"’
r=0 hi T W2 ooy (L= diz™)

Ways of finding the”',,,’s can be found in most standard DSP texts.

The termsB,.z~" correspond to shifted and scaled impulse sequences, and
invert to terms of the fornB,.5[n — r|. The fractional terms

Ay
1-— dkz—l



correspond to exponential sequences. For these terms tGgRiPerties must
be used to decide whether the sequences are left-sidechbisraged.

Example: inverse by partial fractions
Consider the sequenagn| with z-transform

1 2 -1 -2 1 —1)2
PO P L U o N P IS
l—352z7t+5272 (1—-352z7 )1 —-271)

SinceM = N = 2 this can be expressed as

Ay Ay
1. — + -1
1—§Z 1 1—2

X(Z) ZBo+

The valueB, can be found by long division:

2
%2_2 — %z_l + 1) 2724227141
272327142
5271-1
SO
X(z) =2+ —1+527

(1—5z7H(1-271)

The coefficients4; and A, can be found using

A, = (1 — dkz_l)X(z)‘

Z:dk7
SO , ,
1+ 2z~ - 1+4+4
A= P22 FE _lratd
1 -2 19 1-2
and , ,
1+ 2z~ - 1+2+1
Ay = + 2z 1 —l—lz _ + 2+ _3
1— §Z_ L—1—1 ]_/2
Therefore 0 q
X(z)=2-— +

10



Using the fact that the ROC js| > 1, the terms can be inverted one at a time
by inspection to give

x[n] = 28[n] — 9(1/2)"u[n] + Sun].

3.3 Power series expansion

If the z-transform is given as a power series in the form

X(z) = Z x[n|z™"

= .. 4 x[-2]2% +2[-1)2t +2[0) +2[1)z7 F 2227+,
then any value in the sequence can be found by identifyingdk#icient of
the appropriate power af !.

Example: finite-length sequence
The z-transform

X(2) =220 - 3z (1427 - 27

can be multiplied out to give

1 1
X(2) =2%— §z—1—|—§z_1.

By inspection, the corresponding sequence is therefore

1 n=—2
n=-—1
zn] = ¢ -1 n=0

n=1

1
2
0 otherwise

11



or equivalently
2[n] = 16[n + 2] — %5[7@ +1] = 16[n] + %5[7@ _q).
Example: power series expansion
Consider the z-transform
X(2) =log(1+az™1), 12| > |al.

Using the power series expansion fog(1 + x), with |z| < 1, gives

n+l n.—n

X(Z):Z(—l) a™z

n=1

The corresponding sequence is therefore

(—1)nttas n>1

n

0 n <0.

x[n] =

Example: power series expansion by long division
Consider the transform
1
Since the ROC is the exterior of a circle, the sequence is-ggled. We
therefore divide to get a power series in powers of:

1+az ' +a?2724 -

1-— az_l) 1
l—az !
az~1
az 1—a?z72
a?z72 4.
or
1

T 1 =14az ' 4a*z %+,

12



Thereforex[n] = a™u[n].

Example: power series expansion for left-sided sequence
Consider instead the z-transform
1
X(Z>:1——az—1’ 2] < al.
Because of the ROC, the sequence is now a left-sided one.Wédgide to
obtain a series in powers of

—a"lz—a72%22—
—a + z) z
z—a 122
az 1
Thusz[n] = —a"u|—n — 1].

4 Properties of the z-transform

In this section, ifX (z) denotes the z-transform of a sequenrfel and the
ROC of X (z) is indicated byR,,, then this relationship is indicated as

z[n]+Z5X(z), ROC=R,.
Furthermore, with regard to nomenclature, we have two semgsesuch that
21[n]<>X1(2),  ROC= R,,

2o[n]¢2+X5(z),  ROC= R,,.

4.1 Linearity

The linearity property is as follows:

axi[n] + bxz[n]@aXl(z) + b X5 (2), ROC contain®,, N R,,.

13



4.2 Time shifting

The time-shifting property is as follows:
x[n — no]éz_”oX(z), ROC= R,.

(The ROC may change by the possible addition or deletion-ef0 or
z = 00.) This is easily shown:

Y(Z>: Z :L“[n—no]z_”: Z gj[m]z_(m+no)
R S I

Example: shifted exponential sequence
Consider the z-transform

1 1
X(z) = : 2| > 1

| 1
X(z)= 2 =) > -
(=) -1 7 (1—;—1) 21>

The term in brackets corresponds to an exponential seq&ptE u[n]. The
factorz—1! shifts this sequence one sample to the right. The inversansform
is therefore

z[n] = (1/4)" tufn — 1].

Note that this result could also have been easily obtainedaspartial
fraction expansion.

14



4.3 Multiplication by an exponential sequence

The exponential multiplication property is
2z[n)<2sX(2/2),  ROC= |z|Rs,

where the notatioffzy| R, indicates that the ROC is scaled hy| (that is,
inner and outer radii of the ROC scale Jay|). All pole-zero locations are
similarly scaled by a factot,: if X(z) had a pole at = z;, thenX (z/z)
will have a pole at = zy2;.

e If 2 Is positive and real, this operation can be interpreted &siaking or
expanding of the z-plane — poles and zeros change alond liaeisin
the z-plane.

o If zo is complex with unit magnitude:f = ¢’“°) then the scaling
operation corresponds to a rotation in the z-plane by antkang That is,
the poles and zeros rotate along circles centered on thie ofilgis can be
interpreted as a shift in the frequency domain, associatédnaodulation
in the time domain by’/«°”, If the Fourier transform exists, this becomes

ejwonx[n]LX(ej(w_w(’)).

Example: exponential multiplication
The z-transform pair

uln]< S |z| > 1

can be used to determine the z-transformjof] = r" cos(won)u[n|. Since
cos(won) = 1/2e7wo™ 4 1/2e~7wom the signal can be rewritten as

x[n] = %(rej“’o)”u[n] + %(re‘j‘”o)"u[n].

15



From the exponential multiplication property,

1, wsn z 1/2
§(T6j 0)qu[n]< >1 e — |z| > r
1 —Jjwo\n Z 1/2
5(7“6 TNy n]< SPp— |z| >,
SO
1/2 1/2
X(2) = 1 — rejwoz—1 + 1 —reJwogy—1’ 2l >
1 —rcoswyz™! 2] >
= z| >
1 —2rcoswgz—t +r2z=2’
4.4 Differentiation
The differentiation property states that
dX
nx[n]<z> — 2z ) ROC= R,.

dz
This can be seen as follows: since

we have
dX(z)

oo oo

—Z

n=—oo n=—oo

Example: second order pole
The z-transform of the sequence

z[n| = na"u[n|

can be found using

a™u[n|« T 1z| > a,

16

= % Z (—n)z[n]z "t = Z nx[nlz™" = Z{nz[nl}.



to be

d 1 az~!
X(2) = -2 (— ) = |
(=) “dz (1 — az—1> (1—az"1)2’ 2l > a

4.5 Conjugation

This property is
2*[n)]<Z5X*(2*),  ROC= R,.

4.6 Time reversal

Here
1

o*[-n]<ZX*(1/2*),  ROC= =
The notationl / R, means that the ROC is inverted, sdif is the set of values
such that'p < |z| < rr, then the ROC is the set of valueszo$uch that

1/rm < |z| < 1/rg.

Example: time-reversed exponential sequence
The signake[n] = a~"u[—n] is a time-reversed version af u[n]. The
z-transform is therefore

1 —aq 1zt

= 2] <la™"-

X(z) = l—az 1—a 127V

4.7 Convolution

This property states that

x1[n] * xo [n]@Xl(z)Xg(z), ROC contain®&,, N R, .

17



Example: evaluating a convolution using the z-transform
The z-transforms of the signals [n] = a"u[n] andxs[n] = u[n| are

X, (2) = nioanz" _ 1_—22_1 2| > gl
and .
X, (2) = nz:%z_” = - _12_1, 2> 1.
For|a| < 1, the z-transform of the convolutiafin| = x1[n] * x3[n] is
Y(z) = ! _ = 2> 1.

(1—az"H)(1—-271Y (z—a)(z—1)’

Using a partial fraction expansion,

Y(Z):lia<1—1z_1_1—;bz—1>’ 21> 1,
SO )
vln] = 12— (ufn] — " ).

4.8 Initial value theorem
If z[n] is zero forn < 0, then

z[0] = lim X (z2).

Z—> 00

18



Some common z-transform pairs are:

Sequence Transform ROC
d[n] 1 All z
uln] — 2] > 1
—ul—n — 1] — 12| < 1
d[n — m] z=™ All z except0 or co
a"uln] L 2| > la
—a"ul—n — 1] S 12| < |a|
na™u[n] % 2| > |a
—na"ul—n — 1] % 2] <lal
a” 0<n<N-—-1, _ N_-N
0 otherwise T A >0
cos(won)uln] plele 2] > 1
r™ cos(won ) uln] 1 cos(wo)z z| >r

1—2r cos(wo)z—t4r22z—2

4.9 Relationship with the Laplace transform

Continuous-time systems and signals are usually desciypéae Laplace
transform. Lettingz = e*7, wheres is the complex Laplace variable

we have

Z =€

Therefore

s=d+ jw,

(d+jw)T _ edTBJWT.

Izl = el and <z =wT =2nf/f, = 21w/ws,

19



wherew; is the sampling frequency. Asvaries fromoo to oo, the s-plane is
mapped to the z-plane:

e Thejw axis in the s-plane is mapped to the unit circle in the z-plane
e The left-hand s-plane is mapped to the inside of the unitecirc

e The right-hand s-plane maps to the outside of the unit circle
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