
The z-transform
See Oppenheim and Schafer, Second Edition pages 94–139, or First Edition

pages 149–201.

1 Introduction

The z-transform of a sequencex[n] is

X(z) =

∞
∑

n=−∞

x[n]z−n.

The z-transform can also be thought of as an operatorZ{·} that transforms a

sequence to a function:

Z{x[n]} =
∞
∑

n=−∞

x[n]z−n = X(z).

In both casesz is a continuous complex variable.

We may obtain the Fourier transform from the z-transform by making the

substitutionz = ejω. This corresponds to restricting|z| = 1. Also, with

z = rejω,

X(rejω) =
∞
∑

n=−∞

x[n](rejω)−n =
∞
∑

n=−∞

(

x[n]r−n
)

e−jωn.

That is, the z-transform is the Fourier transform of the sequencex[n]r−n. For

r = 1 this becomes the Fourier transform ofx[n]. The Fourier transform

therefore corresponds to the z-transform evaluated on the unit circle:
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The inherent periodicity in frequency of the Fourier transform is captured

naturally under this interpretation.

The Fourier transform does not converge for all sequences — the infinite sum

may not always be finite. Similarly, the z-transform does notconverge for all

sequences or for all values ofz. The set of values ofz for which the

z-transform converges is called theregion of convergence (ROC).

The Fourier transform ofx[n] exists if the sum
∑∞

n=−∞ |x[n]| converges.

However, the z-transform ofx[n] is just the Fourier transform of the sequence

x[n]r−n. The z-transform therefore exists (or converges) if

X(z) =

∞
∑

n=−∞

|x[n]r−n| <∞.

This leads to the condition
∞
∑

n=−∞

|x[n]||z|−n <∞

for the existence of the z-transform. The ROC therefore consists of a ring in

the z-plane:
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In specific cases the inner radius of this ring may include theorigin, and the

outer radius may extend to infinity. If the ROC includes the unit circle |z| = 1,

then the Fourier transform will converge.

Most useful z-transforms can be expressed in the form

X(z) =
P (z)

Q(z)
,

whereP (z) andQ(z) are polynomials inz. The values ofz for which

P (z) = 0 are called thezerosof X(z), and the values withQ(z) = 0 are

called thepoles. The zeros and poles completely specifyX(z) to within a

multiplicative constant.

Example: right-sided exponential sequence
Consider the signalx[n] = anu[n]. This has the z-transform

X(z) =
∞
∑

n=−∞

anu[n]z−n =
∞
∑

n=0

(az−1)n.

Convergence requires that

∞
∑

n=0

|az−1|n <∞,

which is only the case if|az−1| < 1, or equivalently|z| > |a|. In the ROC, the
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series converges to

X(z) =
∞
∑

n=0

(az−1)n =
1

1− az−1
=

z

z − a
, |z| > |a|,

since it is just a geometric series. The z-transform has a region of convergence

for any finite value ofa.
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The Fourier transform ofx[n] only exists if the ROC includes the unit circle,

which requires that|a| < 1. On the other hand, if|a| > 1 then the ROC does

not include the unit circle, and the Fourier transform does not exist. This is

consistent with the fact that for these values ofa the sequenceanu[n] is

exponentially growing, and the sum therefore does not converge.

Example: left-sided exponential sequence
Now consider the sequencex[n] = −anu[−n− 1]. This sequence is left-sided

because it is nonzero only forn ≤ −1. The z-transform is

X(z) =
∞
∑

n=−∞

−anu[−n− 1]z−n = −
−1
∑

n=−∞

anz−n

= −
∞
∑

n=1

a−nzn = 1−
∞
∑

n=0

(a−1z)n.
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For |a−1z| < 1, or |z| < |a|, the series converges to

X(z) = 1−
1

1− a−1z
=

1

1− az−1
=

z

z − a
, |z| < |a|.
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Note that the expression for the z-transform (and the pole zero plot) is exactly
the same as for the right-handed exponential sequence —only the region of

convergence is different. Specifying the ROC is therefore critical when dealing
with the z-transform.

Example: sum of two exponentials
The signalx[n] =

(

1
2

)n
u[n] +

(

−1
3

)n
u[n] is the sum of two real

exponentials. The z-transform is

X(z) =

∞
∑

n=−∞

{(

1

2

)n

u[n] +

(

−
1

3

)n

u[n]

}

z−n

=
∞
∑

n=−∞

(

1

2

)n

u[n]z−n +
∞
∑

n=−∞

(

−
1

3

)n

u[n]z−n

=
∞
∑

n=0

(

1

2
z−1

)n

+
∞
∑

n=0

(

−
1

3
z−1

)n

.

From the example for the right-handed exponential sequence, the first term in
this sum converges for|z| > 1/2, and the second for|z| > 1/3. The combined
transformX(z) therefore converges in the intersection of these regions,
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namely when|z| > 1/2. In this case

X(z) =
1

1− 1
2z

−1
+

1

1 + 1
3z

−1
=

2z(z − 1
12 )

(z − 1
2 )(z +

1
3 )

.

The pole-zero plot and region of convergence of the signal is
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Example: finite length sequence
The signal

x[n] =







an 0 ≤ n ≤ N − 1

0 otherwise

has z-transform

X(z) =

N−1
∑

n=0

anz−n =

N−1
∑

n=0

(az−1)n

=
1− (az−1)N

1− az−1
=

1

zN−1

zN − aN

z − a
.

Since there are only a finite number of nonzero terms the sum always

converges whenaz−1 is finite. There are no restrictions ona (|a| <∞), and

the ROC is the entire z-plane with the exception of the originz = 0 (where the

terms in the sum are infinite). TheN roots of the numerator polynomial are at

zk = aej(2πk/N), k = 0, 1, . . . , N − 1,
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since these values satisfy the equationzN = aN . The zero atk = 0 cancels the

pole atz = a, so there are no poles except at the origin, and the zeros are at

zk = aej(2πk/N), k = 1, . . . , N − 1.

2 Properties of the region of convergence

The properties of the ROC depend on the nature of the signal. Assuming that

the signal has a finite amplitude and that the z-transform is arational function:

• The ROC is a ring or disk in the z-plane, centered on the origin

(0 ≤ rR < |z| < rL ≤ ∞).

• The Fourier transform ofx[n] converges absolutely if and only if the ROC

of the z-transform includes the unit circle.

• The ROC cannot contain any poles.

• If x[n] is finite duration (ie. zero except on finite interval

−∞ < N1 ≤ n ≤ N2 <∞), then the ROC is the entire z-plane except

perhaps atz = 0 or z =∞.

• If x[n] is a right-sided sequence then the ROC extends outward from the

outermost finite pole to infinity.

• If x[n] is left-sided then the ROC extends inward from the innermost

nonzero pole toz = 0.

• A two-sided sequence (neither left nor right-sided) has a ROC consisting

of a ring in the z-plane, bounded on the interior and exteriorby a pole (and

not containing any poles).

• The ROC is a connected region.
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3 The inverse z-transform

Formally, the inverse z-transform can be performed by evaluating a Cauchy
integral. However, for discrete LTI systems simpler methods are often

sufficient.

3.1 Inspection method

If one is familiar with (or has a table of) common z-transformpairs, the inverse

can be found by inspection. For example, one can invert the z-transform

X(z) =

(

1

1− 1
2z

−1

)

, |z| >
1

2
,

using the z-transform pair

anu[n]
Z
←→

1

1− az−1
, for |z| > |a|.

By inspection we recognise that

x[n] =

(

1

2

)n

u[n].

Also, if X(z) is a sum of terms then one may be able to do a term-by-term
inversion by inspection, yieldingx[n] as a sum of terms.

3.2 Partial fraction expansion

For any rational function we can obtain a partial fraction expansion, and

identify the z-transform of each term. Assume thatX(z) is expressed as a ratio
of polynomials inz−1:

X(z) =

∑M
k=0 bkz

−k

∑N
k=0 akz

−k
.
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It is always possible to factorX(z) as

X(z) =
b0
a0

∏M
k=1(1− ckz

−1)
∏N

k=1(1− dkz−1)
,

where theck’s anddk ’s are the nonzero zeros and poles ofX(z).

• If M < N and the poles are all first order, thenX(z) can be expressed as

X(z) =
N
∑

k=1

Ak

1− dkz−1
.

In this case the coefficientsAk are given by

Ak = (1− dkz
−1)X(z)

∣

∣

z=dk.

• If M ≥ N and the poles are all first order, then an expansion of the form

X(z) =

M−N
∑

r=0

Brz
−r +

N
∑

k=1

Ak

1− dkz−1

can be used, and theBr ’s be obtained by long division of the numerator

by the denominator. TheAk ’s can be obtained using the same equation as
for M < N .

• The most general form for the partial fraction expansion, which can also

deal with multiple-order poles, is

X(z) =

M−N
∑

r=0

Brz
−r +

N
∑

k=1,k 6=i

Ak

1− dkz−1
+

s
∑

m=1

Cm

(1− diz−1)m
.

Ways of finding theCm’s can be found in most standard DSP texts.

The termsBrz
−r correspond to shifted and scaled impulse sequences, and

invert to terms of the formBrδ[n− r]. The fractional terms

Ak

1− dkz−1
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correspond to exponential sequences. For these terms the ROC properties must

be used to decide whether the sequences are left-sided or right-sided.

Example: inverse by partial fractions
Consider the sequencex[n] with z-transform

X(z) =
1 + 2z−1 + z−2

1− 3
2
z−1 + 1

2
z−2

=
(1 + z−1)2

(1− 1
2
z−1)(1− z−1)

, |z| > 1.

SinceM = N = 2 this can be expressed as

X(z) = B0 +
A1

1− 1
2z

−1
+

A2

1− z−1
.

The valueB0 can be found by long division:

2
1
2z

−2 − 3
2z

−1 + 1
)

z−2+2z−1+1

z−2−3z−1+2

5z−1−1

so

X(z) = 2 +
−1 + 5z−1

(1− 1
2z

−1)(1− z−1)
.

The coefficientsA1 andA2 can be found using

Ak = (1− dkz
−1)X(z)

∣

∣

z=dk

,

so

A1 =
1 + 2z−1 + z−2

1− z−1

∣

∣

∣

∣

z−1=2

=
1 + 4 + 4

1− 2
= −9

and

A2 =
1 + 2z−1 + z−2

1− 1
2z

−1

∣

∣

∣

∣

z−1=1

=
1 + 2 + 1

1/2
= 8.

Therefore

X(z) = 2−
9

1− 1
2z

−1
+

8

1− z−1
.
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Using the fact that the ROC is|z| > 1, the terms can be inverted one at a time

by inspection to give

x[n] = 2δ[n]− 9(1/2)nu[n] + 8u[n].

3.3 Power series expansion

If the z-transform is given as a power series in the form

X(z) =
∞
∑

n=−∞

x[n]z−n

= . . .+ x[−2]z2 + x[−1]z1 + x[0] + x[1]z−1 + x[2]z−2 + . . . ,

then any value in the sequence can be found by identifying thecoefficient of

the appropriate power ofz−1.

Example: finite-length sequence
The z-transform

X(z) = z2(1−
1

2
z−1)(1 + z−1)(1− z−1)

can be multiplied out to give

X(z) = z2 −
1

2
z − 1 +

1

2
z−1.

By inspection, the corresponding sequence is therefore

x[n] =







































1 n = −2

−1
2 n = −1

−1 n = 0

1
2

n = 1

0 otherwise
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or equivalently

x[n] = 1δ[n+ 2]−
1

2
δ[n+ 1]− 1δ[n] +

1

2
δ[n− 1].

Example: power series expansion
Consider the z-transform

X(z) = log(1 + az−1), |z| > |a|.

Using the power series expansion forlog(1 + x), with |x| < 1, gives

X(z) =

∞
∑

n=1

(−1)n+1anz−n

n
.

The corresponding sequence is therefore

x[n] =







(−1)n+1 an

n
n ≥ 1

0 n ≤ 0.

Example: power series expansion by long division
Consider the transform

X(z) =
1

1− az−1
, |z| > |a|.

Since the ROC is the exterior of a circle, the sequence is right-sided. We
therefore divide to get a power series in powers ofz−1:

1+az−1+a2z−2+ · · ·

1− az−1
)

1

1−az−1

az−1

az−1−a2z−2

a2z−2+ · · ·

or
1

1− az−1
= 1 + az−1 + a2z−2 + · · · .
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Thereforex[n] = anu[n].

Example: power series expansion for left-sided sequence
Consider instead the z-transform

X(z) =
1

1− az−1
, |z| < |a|.

Because of the ROC, the sequence is now a left-sided one. Thuswe divide to
obtain a series in powers ofz:

−a−1z−a−2z2− · · ·

−a+ z
)

z

z−a−1z2

az−1

Thusx[n] = −anu[−n− 1].

4 Properties of the z-transform

In this section, ifX(z) denotes the z-transform of a sequencex[n] and the
ROC ofX(z) is indicated byRx, then this relationship is indicated as

x[n]
Z
←→X(z), ROC= Rx.

Furthermore, with regard to nomenclature, we have two sequences such that

x1[n]
Z
←→X1(z), ROC= Rx1

x2[n]
Z
←→X2(z), ROC= Rx2

.

4.1 Linearity

The linearity property is as follows:

ax1[n] + bx2[n]
Z
←→aX1(z) + bX2(z), ROC containsRx1

∩Rx1
.
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4.2 Time shifting

The time-shifting property is as follows:

x[n− n0]
Z
←→z−n0X(z), ROC= Rx.

(The ROC may change by the possible addition or deletion ofz = 0 or

z =∞.) This is easily shown:

Y (z) =
∞
∑

n=−∞

x[n− n0]z
−n =

∞
∑

m=−∞

x[m]z−(m+n0)

= z−n0

∞
∑

m=−∞

x[m]z−m = z−n0X(z).

Example: shifted exponential sequence
Consider the z-transform

X(z) =
1

z − 1
4

, |z| >
1

4
.

From the ROC, this is a right-sided sequence. Rewriting,

X(z) =
z−1

1− 1
4z

−1
= z−1

(

1

1− 1
4z

−1

)

, |z| >
1

4
.

The term in brackets corresponds to an exponential sequence(1/4)nu[n]. The

factorz−1 shifts this sequence one sample to the right. The inverse z-transform

is therefore

x[n] = (1/4)n−1u[n− 1].

Note that this result could also have been easily obtained using a partial

fraction expansion.
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4.3 Multiplication by an exponential sequence

The exponential multiplication property is

zn0 x[n]
Z
←→X(z/z0), ROC= |z0|Rx,

where the notation|z0|Rx indicates that the ROC is scaled by|z0| (that is,

inner and outer radii of the ROC scale by|z0|). All pole-zero locations are

similarly scaled by a factorz0: if X(z) had a pole atz = z1, thenX(z/z0)

will have a pole atz = z0z1.

• If z0 is positive and real, this operation can be interpreted as a shrinking or

expanding of the z-plane — poles and zeros change along radial lines in

the z-plane.

• If z0 is complex with unit magnitude (z0 = ejω0) then the scaling

operation corresponds to a rotation in the z-plane by and angleω0. That is,

the poles and zeros rotate along circles centered on the origin. This can be

interpreted as a shift in the frequency domain, associated with modulation

in the time domain byejω0n. If the Fourier transform exists, this becomes

ejω0nx[n]
F
←→X(ej(ω−ω0)).

Example: exponential multiplication
The z-transform pair

u[n]
Z
←→

1

1− z−1
, |z| > 1

can be used to determine the z-transform ofx[n] = rn cos(ω0n)u[n]. Since

cos(ω0n) = 1/2ejω0n + 1/2e−jω0n, the signal can be rewritten as

x[n] =
1

2
(rejω0)nu[n] +

1

2
(re−jω0)nu[n].
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From the exponential multiplication property,

1

2
(rejω0)nu[n]

Z
←→

1/2

1− rejω0z−1
, |z| > r

1

2
(re−jω0)nu[n]

Z
←→

1/2

1− re−jω0z−1
, |z| > r,

so

X(z) =
1/2

1− rejω0z−1
+

1/2

1− re−jω0z−1
, |z| > r

=
1− r cosω0z

−1

1− 2r cosω0z−1 + r2z−2
, |z| > r.

4.4 Differentiation

The differentiation property states that

nx[n]
Z
←→− z

dX(z)

dz
, ROC= Rx.

This can be seen as follows: since

X(z) =
∞
∑

n=−∞

x[n]z−n,

we have

−z
dX(z)

dz
= −z

∞
∑

n=−∞

(−n)x[n]z−n−1 =
∞
∑

n=−∞

nx[n]z−n = Z{nx[n]}.

Example: second order pole
The z-transform of the sequence

x[n] = nanu[n]

can be found using

anu[n]
Z
←→

1

1− az−1
, |z| > a,
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to be

X(z) = −z
d

dz

(

1

1− az−1

)

=
az−1

(1− az−1)2
, |z| > a.

4.5 Conjugation

This property is

x∗[n]
Z
←→X∗(z∗), ROC= Rx.

4.6 Time reversal

Here

x∗[−n]
Z
←→X∗(1/z∗), ROC=

1

Rx
.

The notation1/Rx means that the ROC is inverted, so ifRx is the set of values

such thatrR < |z| < rL, then the ROC is the set of values ofz such that

1/rl < |z| < 1/rR.

Example: time-reversed exponential sequence
The signalx[n] = a−nu[−n] is a time-reversed version ofanu[n]. The

z-transform is therefore

X(z) =
1

1− az
=
−a−1z−1

1− a−1z−1
, |z| < |a−1|.

4.7 Convolution

This property states that

x1[n] ∗ x2[n]
Z
←→X1(z)X2(z), ROC containsRx1

∩Rx2
.
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Example: evaluating a convolution using the z-transform
The z-transforms of the signalsx1[n] = anu[n] andx2[n] = u[n] are

X1(z) =
∞
∑

n=0

anz−n =
1

1− az−1
, |z| > |a|

and

X2(z) =
∞
∑

n=0

z−n =
1

1− z−1
, |z| > 1.

For |a| < 1, the z-transform of the convolutiony[n] = x1[n] ∗ x2[n] is

Y (z) =
1

(1− az−1)(1 − z−1)
=

z2

(z − a)(z − 1)
, |z| > 1.

Using a partial fraction expansion,

Y (z) =
1

1− a

(

1

1− z−1
−

a

1− az−1

)

, |z| > 1,

so

y[n] =
1

1− a
(u[n]− an+1u[n]).

4.8 Initial value theorem

If x[n] is zero forn < 0, then

x[0] = lim
z→∞

X(z).
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Some common z-transform pairs are:

Sequence Transform ROC

δ[n] 1 All z

u[n] 1
1−z−1 |z| > 1

−u[−n− 1] 1
1−z−1 |z| < 1

δ[n−m] z−m All z except0 or∞

anu[n] 1
1−az−1 |z| > |a|

−anu[−n− 1] 1
1−az−1 |z| < |a|

nanu[n] az−1

(1−az−1)2 |z| > |a|

−nanu[−n− 1] az−1

(1−az−1)2 |z| < |a|






an 0 ≤ n ≤ N − 1,

0 otherwise
1−aNz−N

1−az−1 |z| > 0

cos(ω0n)u[n]
1−cos(ω0)z

−1

1−2 cos(ω0)z−1+z−2 |z| > 1

rn cos(ω0n)u[n]
1−r cos(ω0)z

−1

1−2r cos(ω0)z−1+r2z−2 |z| > r

4.9 Relationship with the Laplace transform

Continuous-time systems and signals are usually describedby the Laplace
transform. Lettingz = esT , wheres is the complex Laplace variable

s = d+ jω,

we have

z = e(d+jω)T = edT ejωT .

Therefore

|z| = edT and ∢z = ωT = 2πf/fs = 2πω/ωs,
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whereωs is the sampling frequency. Asω varies from∞ to∞, the s-plane is

mapped to the z-plane:

• Thejω axis in the s-plane is mapped to the unit circle in the z-plane.

• The left-hand s-plane is mapped to the inside of the unit circle.

• The right-hand s-plane maps to the outside of the unit circle.
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