
Sampling of continuous-time signals
See Oppenheim and Schafer, Second Edition pages 140–239, orFirst Edition

pages 80–148.

1 Periodic sampling

Discrete-time signalxŒn� often arises from periodic sampling of

continuous-time signalxc.t/:

xŒn� D xc.nT /; �1 < n < 1:

This system is called an ideal continuous-to-discrete-time (C/D) converter or

sampler,

T

C/D
xc.t/ xŒn� D xc.nT /

and is described by the following:

� Sampling period:T seconds.

� Sampling frequency:fs D 1=T samples per second, or�s D 2�=T

radians per second.

In practice, sampling is usually approximately implemented using

analog-to-digital (A/D) converter.

The sampling process is not generally invertible: one cannot always

reconstructxc.t/ unambiguously fromxŒn�. However, ambiguity can be

removed byrestricting input signals to sampler.
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2 Frequency-domain representation of sampling

What is the frequency-domain relation between input and output of C/D

converter?

Consider convertingxc.t/ to xs.t/, by modulating it with the periodic impulse

train

s.t/ D

1
X

nD�1

ı.t � nT /;

which has frequency representation

S.j �/ D
2�

T

1
X

kD�1

ı.� � k�s/ W

... ...

t

xc.t/

xs.t/

Through the sifting property of the impulse function,

xs.t/ D xc.t/s.t/ D xc.t/

1
X

nD�1

ı.t � nT /

D

1
X

nD�1

xc.nT /ı.t � nT /:

The Fourier transformXs.j �/ of xs.t/ D xc.t/s.t/ is the continuous-time

convolution of Fourier transformsXc.j �/ andS.j �/, so

Xs.j �/ D
1

2�
Xc.j �/ � S.j �/ D

1

T

1
X

kD�1

Xc.j.� � k�s//:
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Therefore, the Fourier transform ofxs.t/ consists of copies ofXc.j �/, shifted

by integer multiples of sampling frequency�s , and then superimposed:

0

0

... ...

0
�

�

�

�N

�N

�2�s

�2�s

��s

��s �s 2�s

Xc.j �/

S.j �/

Xs.j �/

If xc.t/ is bandlimited, with highest nonzero frequency at�N , then the

replicas do not overlap when

�s > 2�N :

Then we can recoverxc.t/ from xs.t/ using an ideal lowpass filter.Otherwise,

Xc.j �/ cannot be recovered using lowpass filtering —aliasing results:

0

... ...

�
�2�s ��s �s 2�s

Xs.j �/

The frequency�N is referred to as theNyquist frequency, and the frequency
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2�N that must be exceeded in the sampling is theNyquist rate.

The objective now is to express the Fourier transformX.ej!/ of xŒn� in terms

of Xc.j �/ andXs.j �/. Taking the Fourier transform of the relationship

xs.t/ D

1
X

nD�1

xc.nT /ı.t � nT /

yields the following:

Xs.j �/ D

1
X

nD�1

xc.nT /e�j �T n:

Now, sincexŒn� D xc.nT / and

X.ej!/ D

1
X

nD�1

xŒn�e�j!n;

it follows that

Xs.j �/ D X.ej!/
ˇ

ˇ

!D�T
D X.ej �T /:

Consequently,

X.ej �T / D
1

T

1
X

kD�1

Xc.j.� � k�s//;

and

X.ej!/ D
1

T

1
X

kD�1

Xc

�

j

�

!

T
�

2�k

T

��

:

ThusX.ej!/ is just a frequency-scaled version ofXs.j �/, with the scaling

specified by! D �T . Alternatively, the effect of sampling may be thought of

as anormalisation of the frequency axis, so that the frequency� D �s of

Xs.j �/ is normalised to! D 2� for X.ej!/.
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3 Reconstruction of bandlimited signal from

samples

If samples of a bandlimited continuous-time signal are taken frequently

enough, then they are sufficient to represent the signal exactly. The

continuous-time signal can then be recovered from the samples. This task is

ideally performed by a discrete-to-continuous-time (D/C)converter. The form

and behaviour of such a converter is discussed in this section.

Given sequence of samplesxŒn�, we can form impulse train

xs.t/ D

1
X

nD�1

xŒn�ı.t � nT /:

Thenth sample corresponds to the impulse at timet D nT .

If appropriate sampling conditions are met, namely the signal is bandlimited

and the Fourier transform replicas do not overlap, thenx.t/ can be

reconstructed fromxs.t/ by ideal continuous-time lowpass filtering:

xr .t/ D

1
X

nD�1

xŒn�hr .t � nT /:

Herehr .t/ is impulse response of an ideal LPF with cutoff frequency at�c :

0

... ...

�

�c

�2�s ��s �s 2�s

Xs.j �/
Hr .j �/

A convenient choice for the cutoff frequency is�c D �s=2 D �=T ,
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corresponding to the ideal reconstruction filter

Hr .j �/ D

8

<

:

T j�j � �=T

0 j�j > �=T

and reconstructed signal

Xr .j �/ D Hr .j �/X.ej �T /

D

8

<

:

TX.ej �T / j�j � �=T

0 j�j > �=T:

In the time domain the ideal reconstruction filter has impulse response

hr .t/ D
sin.�t=T /

�t=T
;

so the reconstructed signal is

xr .t/ D

1
X

nD�1

xŒn�
sinŒ�.t � nT /=T �

�.t � nT /=T
:

From the previous frequency-domain argument, ifxŒn� D xc.nT / with

Xc.j �/ D 0 for j�j � �=T , thenxr .t/ D xc.t/. Note that the filterhr .t/ is

not realisable since it has infinite duration.

An ideal discrete-to-continuous (D/C) reconstruction system therefore has the

form
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T

impulse train
Sequence to

Reconstruction
filter

D/C

T

xŒn�

xŒn� xs.t/

xr .t/

xr .t/Hr .j �/

4 Discrete-time processing of continuous-time

signals

Discrete-time systems are often used to process continuous-time signals. This

can be accomplished by a system of the form:

Discrete−time
system

C/D D/C

T T

xc.t/ xŒn� yŒn� yr.t/

Heff.j �/ D Hc.j �/

For now it is assumed that the C/D and D/C converters have the same sampling

rate.

The C/D converter produces the discrete-time signal

xŒn� D xc.nT /;
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with Fourier transform

X.ej!/ D
1

T

1
X

kD�1

Xc

�

j

�

!

T
�

2�k

T

��

:

The D/C converter creates a continuous-time output of the form

yr .t/ D

1
X

nD�1

yŒn�
sinŒ�.t � nT /=T �

�.t � nT /=T
:

The continuous-time Fourier transform ofyr.t/, namelyYr.j �/, and the

discrete-time Fourier transform ofyŒn�, namelyY.ej �/, are related by

Yr .j �/ D Hr .j �/Y.ej �T /

D

8

<

:

T Y.ej �T / j�j < �=T

0 otherwise:

If the discrete-time system is LTI, then

Y.ej!/ D H.ej!/X.ej!/;

whereH.ej!/ is the frequency response of the system. Therefore

Yr.j �/ D Hr .j �/H.ej �T /X.ej �T /

D Hr .j �/H.ej �T /
1

T

1
X

kD�1

Xc

�

j

�

� �
2�k

T

��

:

If Xc.j �/ D 0 for j�j � �=T , then the ideal LPFHr .j �/ selects only the

term fork D 0 in the sum, and scales the result:

Yr .j �/ D

8

<

:

H.ej �T /Xc.j �/ j�j < �=T

0 j�j � �=T:
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Thus if Xc.j �/ is bandlimited and sampled above the Nyquist rate, then the
output is related to the input by

Yr .j �/ D Heff.j �/Xc.j �/;

where

Heff.j �/ D

8

<

:

H.ej �T / j�j < �=T

0 j�j � �=T

is the effective frequency response of the system.

5 Continuous-time processing of discrete-time
signals

It is conceptually useful to consider continuous-time processing of
discrete-time signals. A system to perform this task is:

D/C C/D

T T

xc.t/ yc.t/xŒn� yŒn�

hc.t/

Hc.j �/

hŒn�; H.ej!/

Since the D/C converter includes an ideal LPF,Xc.j �/ and therefore also
Yc.j �/ will be zero forj�j � �=T . Thus the C/D converter samplesyc.t/

without aliasing and we have

xc.t/ D

1
X

nD�1

xŒn�
sinŒ�.t � nT /=T �

�.t � nT /=T

and

yc.t/ D

1
X

nD�1

yŒn�
sinŒ�.t � nT /=T �

�.t � nT /=T
;

9



wherexŒn� D xc.nT / andyŒn� D yc.nT /. In the frequency domain,

Xc.j �/ D TX.ej �T /; j�j < �=T;

Yc.j �/ D Hc.j �/Xc.j �/; j�j < �=T;

Y.ej!/ D
1

T
Yc

�

j
!

T

�

; j!j < �:

The overall system therefore behaves like a discrete-time system with

frequency response

H.ej!/ D Hc

�

j
!

T

�

j!j < �:

Equivalently, the overall frequency response of the systemwill be equal to a

givenH.ej!/ if the frequency of the continuous-time system is

Hc.j �/ D H.ej �T /; j�j < �=T:

SinceXc.j �/ D 0 for j�j � �=T , Hc.j �/ may be chosen arbitrarily above

�=T .

6 Changing sampling rate using discrete-time

processing

Given the sequence

xŒn� D xc.nT /

obtained by sampling (with periodT ) the signalxc.t/, we often want to

change the sampling rate (to periodT 0):

x0Œn� D xc.nT 0/:

One approach is to reconstructxc.t/ from xŒn�, and then resample with new

periodT 0. However, we want to do this using only discrete-time operations.
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6.1 Sampling rate reduction by integer factor

period T’=MT

Compressor

Sampling
period T

Sampling

xŒn� xd Œn� D xŒnM �
# M

The sampling ratecompressor implements the following function:

xd Œn� D xŒnM � D xc.nM T /:

Herexd Œn� is exactly the sequence that would be obtained by samplingxc.t/

with periodT 0 D M T .

If Xc.j �/ D 0 for j�j � �N , thenxd Œn� is an exact (unaliased)

representation ofxc.t/ if �=.M T / � �N .

In the frequency domain we have

X.ej!/ D
1

T

1
X

kD�1

Xc

�

j

�

!

T
�

2�k

T

��

and

Xd .ej!/ D
1

T 0

1
X

rD�1

Xc

�

j

�

!

T 0
�

2�r

T 0

��

:

SinceT 0 D M T , and noting that withr D i C kM we can write the

summation overr as a summation over�1 < k < 1 and0 � i � M � 1, we

obtain

Xd .ej!/ D
1

M

M �1
X

iD0

"

1

T

1
X

kD�1

Xc

�

j

�

!

M T
�

2�k

T
�

2�i

M T

��

#

:

D
1

M

M �1
X

iD0

X.ej.!=M �2�i=M //:
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0

0

T’=MT: case M=2

0

0

0

!

!

�

�

�

2�

2�

�2�

�2�

2�
T

� 2�
T

2�
T 0� 2�

T 0

1
T

1
T

1
T 0

1
M T

Xc.j �/

Xs.j �/

Xd .j �/

X.ej!/

Xd .ej!/

Applying a compressor to a signal can result in aliasing. This can be avoided

(at the cost of some information) by prefiltering with a lowpass filter, and then

compressing the sampling rate:

Compressor
LPF

Sampling
period T

Sampling
period T

Sampling
period T’=MT

xŒn� QxŒn� Qxd Œn� D QxŒnM ��c D �=M
GainD 1 # M

This is referred to asdownsampling (or decimation) by a factor M .
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6.2 Increasing sampling rate by integer factor

With underlying continuous-time signalxc.t/, we want to obtain samples

xi Œn� D xc.nT 0/

from

xŒn� D xc.nT /;

whereT 0 D T=L. Therefore

xi Œn� D xŒn=L� D xc.nT=L/; n D 0; ˙L; ˙2L; : : : :

This is referred to asupsampling (or interpolating) by a factor L, and is

performed byexpanding the sampling rate, and then lowpass filtering:

Expander
LPF

Sampling
period T period T’=T/L

Sampling Sampling
period T’=T/L

xŒn� xeŒn� xi Œn��c D �=L
GainD L" L

The expanded signal is

xeŒn� D

8

<

:

xŒn=L�; n D 0; ˙L; ˙2L; : : : ;

0; otherwise;

D

1
X

kD�1

xŒk�ıŒn � kL�:

An example of upsampling in the discrete-time domain is shown below:
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n

0
n

n

0

0

xŒn�

xeŒn�

xi Œn�

The Fourier transform of the expanded signal is

Xe.ej!/ D

1
X

nD�1

 

1
X

kD�1

xŒk�ıŒn � kL�

!

e�j!n

D

1
X

kD�1

xŒk�e�j!Lk D X.ej!L/:

Final upsampling is obtained by lowpass filtering the expanded signal.
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0

T’=T/L: case L=2

0

0

0

0

L

Xc.j �/

!

!

!

!

�

2�

2�

2�

�2�

�2�

�2�

�
L

�
L

� �
L

� �
L

2�
L

� 2�
L

1
T

1
T

L
T

X.ej!/

Xe.ej!/

Xi .e
j!/

Hi .e
j!/

We can obtain an interpolation formula forxi Œn� in terms ofxŒn�: since the

LPF has impulse response

hi Œn� D
sin.�n=L/

�n=L
;

we have

xi Œn� D

1
X

kD�1

xŒk�
sinŒ�.n � kL/=L�

�.n � kL/=L
:
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6.3 Changing the sampling rate by a noninteger factor

By cascading upsampling (by factor L) and downsampling (by factor M), the

sampling rate can be changed by a noninteger factor.

TM/L

LPFLPF

T T/LT/L T/L

replacements

xŒn�

xeŒn�

xi Œn�

Qxi Œn�

Qxd Œn��c D �=L �c D �=M
GainD L GainD L" L # M

This forms the basis ofmultirate signal processing, where highly efficient

structures are developed for implementing complicated signal processing

operations. The discrete wavelet transform (DWT) can be developed in this

framework.
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