
Transform analysis of LTI systems
Oppenheim and Schafer, Second edition pp. 240–339.

For LTI systems we can write

yŒn� D xŒn� � hŒn� D

1
X

kD�1

xŒk�hŒn � k�:

Alternatively, this relationship can be expressed in the z-transform domain as

Y.z/ D H.z/X.z/;

whereH.z/ is thesystem function, or the z-transform of the system impulse

response.

Recall that a LTI system is completely characterised by its impulse response,

or equivalently, its system function.

1 Frequency response of LTI systems

The frequency responseH.ej!/ of a system is defined as the gain that the

system applies to the complex exponential inputej!n. The Fourier transforms

of the system input and output are therefore related by

Y.ej!/ D H.ej!/X.ej!/:

In terms of magnitude and phase,

jY.ej!/j D jH.ej!/jjX.ej!/j

^Y.ej!/ D ^H.ej!/ C ^X.ej!/:

In this casejH.ej!/j is referred to as themagnitude responseor gain of the

system, and̂ H.ej!/ is thephase responseor phase shift.

1

1.1 Ideal frequency-selective filters

Frequency components of the input are suppressed in the output if jH.ej!/j is
small at those frequencies. Theideal lowpass filter is defined as the LTI
system with frequency response

Hlp.ej!/

8

<

:

1 j!j � !c

0 !c < j!j � �:

Its magnitude and phase are
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This response, as for all discrete-time signals, is periodic with period2�. Its
impulse response (for�1 < n < 1) is

hlpŒn� D
1

2�

Z !c

�!c

ej!nd! D
1

2�

�

1

jn
ej!n

�!c

�!c

D
1

�n

1

2j
.ej!cn � e�j!cn/ D

sin.!cn/

�n
;

which for!c D �=4 is
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The ideal lowpass filter is noncausal, and its impulse response extends from

�1 < n < 1. The system is therefore not computationally realisable. Also,

the phase response of the ideal lowpass filter is specified to be zero — this is a

problem in that causal ideal filters have nonzero phase responses.

The ideal highpass filter is

Hhp.e
j!/ D

8

<

:

0 j!j � !c

1 !c < j!j � �:

SinceHhp.e
j!/ D 1 � Hlp.ej!/, its frequency response is

hhpŒn� D ıŒn� � hlpŒn� D ıŒn� �
sin.!cn/

�n
:

1.2 Phase distortion and delay

Consider the ideal delay, with impulse response

hidŒn� D ıŒn � nd �

and frequency response

Hid.ej!/ D e�j!nd :

3

The magnitude and phase of this response are

jHid.ej!/j D 1;

^Hid.ej!/ D �!nd ; j!j < �:

The phase distortion of the ideal delay is therefore a linearfunction of!. This

is considered to be a rather mild (and therefore acceptable)form of phase

distortion, since the only effect is to shift the sequence intime. In other words,

a filter with linear phase response can be viewed as a cascade of a zero-phase

filter, followed by a time shift or delay.

In designing approximations to ideal filters, we are therefore frequently willing

to accept linear phase distortion. The ideal lowpass filter with phase distortion

would be defined as

Hlp.ej!/ D

8

<

:

e�j!nd j!j � !c

0 !c < j!j � �;

with impulse response

hlpŒn� D
sin.!c.n � nd /

�.n � nd /
:

A convenient measure of linearity of the phase is thegroup delay, which

relates to the effect of the phase on a narrowband signal. Consider the

narrowband inputxŒn� D sŒn� cos.!0n/, wheresŒn� is the envelope of the

signal. SinceX.ej!/ is nonzero only around! D !0, the effect of the phase of

the system can be approximated around! D !0 by

^H.ej!/ � ��0 � !nd :

Thus the response of the system toxŒn� D sŒn� cos.!0n/ is approximately

yŒn� D sŒn � nd � cos.!0n � �0 � !0nd /. The time delay of the envelopesŒn�

of the narrowband signalxŒn� with Fourier transform centred at!0 is therefore

given by the negative of the slope of the phase at!0. The group delay of a
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system is therefore defined as

�.!/ D grdŒH.ej!/� D �
d

d!

˚

argŒH.ej!/�
	

:

The deviation of the group delay away from a constant indicates the degree of

nonlinearity of the phase. Note that the phase here must be considered as a

continuous function of!.

2 System response for LCCD systems

Ideal filters cannot be implemented with finite computation.Therefore we

need approximations to ideal filters. Systems described by LCCD equations

N
X

kD0

akyŒn � k� D

M
X

kD0

bkxŒn � k�

are useful for providing one class of approximation.

The properties of this class of system are best developed in the z-transform

domain. The z-transform of the equation is

N
X

kD0

akz�kY.z/ D

M
X

kD0

bkz�kX.z/;

or equivalently
 

N
X

kD0

akz�k

!

Y.z/ D

 

M
X

kD0

bkz�k

!

X.z/:

The system function for a system that satisfies a difference equation of the

required form is therefore

H.z/ D
Y.z/

X.z/
D

PM
kD0 bkz�k

PN
kD0 akz�k

D

�

b0

a0

�
QM

kD1.1 � ckz�1/
QN

kD1.1 � dkz�1/
:

5

Each factor.1 � ckz�1/ in the numerator contributes a zero atz D ck and a

pole atz D 0. Each factor.1 � dkz�1/ contributes a zero atz D 0 and a pole

atz D dk .

The difference equation and the algebraic expression for the system function

are equivalent, as demonstrated by the next example.

Example: second-order system
Given the system function

H.z/ D
.1 C z�1/2

.1 � 1
2
z�1/.1 C 3

4
z�1/

;

we can find the corresponding difference equation by noting that

H.z/ D
1 C 2z�1 C z�2

1 C 1
4
z�1 � 3

8
z�2

D
Y.z/

X.z/
:

Therefore

.1 C
1

4
z�1 �

3

8
z�2/Y.z/ D .1 C 2z�1 C z�2/X.z/;

and the difference equation is

yŒn� C
1

4
yŒn � 1� �

3

8
yŒn � 2� D xŒn� C 2xŒn � 1� C xŒn � 2�:

2.1 Stability and causality

A difference equation does not uniquely specify the impulseresponse of a LTI

system. For a given system function (expressed as a ratio of polynomials),

each possible choice of ROC will lead to a different impulse response.

However, they will all correspond to the same difference equation.

If a system is causal, it follows that the impulse response isa right-sided

sequence, and the region of convergence ofH.z/ must be outside of the

outermost pole.
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Alternatively, if we require that the system be stable, thenwe must have

1
X

nD�1

jhŒn�j < 1:

For jzj D 1 this is identical to the condition

1
X

nD�1

jhŒn�z�nj < 1;

so the condition for stability is equivalent to the condition that the ROC of
H.z/ include the unit circle.

Example: determining the ROC
The frequency response of the LTI system with difference equation

yŒn� �
5

2
yŒn � 1� C yŒn � 2� D xŒn�

is

H.z/ D
1

1 � 5
2
z�1 C z�2

D
1

.1 � 1
2
z�1/.1 � 2z�1/

:

There are three choices for the ROC:

� Causal: ROC outside of outermost polejzj > 2 (but then not stable).

� Stable: ROC such that1
2

< jzj < 2 (but then not causal).

� If jzj < 1
2

then the system is neither causal nor stable.

For a causal and stable system the ROC must be outside the outermost pole

and include the unit circle. This is only possible if all the poles are inside the
unit circle.

2.2 Inverse systems

The systemHi .z/ is the inverse system toH.z/ if

G.z/ D H.z/Hi .z/ D 1;

7

which implies that

H.z/ D
1

Hi .z/
:

The time-domain equivalent is

gŒn� D hŒn� � hi Œn� D ıŒn�:

The question of which ROC to associate withHi .z/ is answered by the

convolution theorem — for the previous equation to hold the regions of

convergence ofH.z/ andHi .z/ must overlap.

Example: inverse system for first-order system
Let H.z/ be

H.z/ D
1 � 0:5z�1

1 � 0:9z�1

with ROC jzj > 0:9. ThenHi .z/ is

Hi .z/ D
1 � 0:9z�1

1 � 0:5z�1
:

Since there is only one pole, there are only two possible ROCs. The choice of

ROC forHi .z/ that overlaps withjzj > 0:9 is jzj > 0:5. Therefore, the

impulse response of the inverse system is

hi Œn� D .0:5/nuŒn� � 0:9.0:5/n�1uŒn � 1�:

In this case the inverse is both causal and stable.

A LTI system is stable and causal with a stable and causal inverse if and only if

both the poles and zeros ofH.z/ are inside the unit circle — such systems are

calledminimum phasesystems.

The frequency response of the inverse system, if it exists, is

H.ej!/ D
1

Hi .ej!/
:

Not all systems have an inverse. For example, there is no way to recover the
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frequency components above the cutoff frequency that were set to zero by the

action of the lowpass filter.

2.3 Impulse response for rational system functions

If a system has a rational transfer function, with at least one pole that is not

cancelled by a zero, then there will always be a term corresponding to an

infinite length sequence in the impulse response. Such systems are called

infinite impulse response (IIR)systems.

On the other hand, if a system has no poles except atz D 0 (that is,N D 0 in

the canonical LCCDE expression), then

H.z/ D

M
X

kD0

bkz�k :

In this case the system is determined to within a constant multiplier by its

zeros, so the impulse response has a finite length:

hŒn� D

M
X

kD0

bkıŒn � k� D

8

<

:

bn 0 � n � M

0 otherwise

In this case the impulse response is finite in length, and the system is called a

finite impulse response (FIR)system.

Example: a first-order IIR system
Given a causal system satisfying the difference equation

yŒn� � ayŒn � 1� D xŒn�;

the system function is

H.z/ D
1

1 � az�1
D

z

z � a
; jzj > jaj:

9

The condition for stability isjaj < 1. The inverse z-transform is

hŒn� D anuŒn�:

Example: a simple FIR system
Consider the truncated impulse response

hŒn� D

8

<

:

an 0 � n � M

0 otherwise:

The system function is

H.z/ D

M
X

nD0

anz�n D
1 � aM C1z�M �1

1 � az�1
:

The zeros of the numerator are at

zk D aej 2�k=.M C1/; k D 0; 1; : : : ; M:

With a assumed real and positive, the pole atz D a is cancelled by a zero. The
pole-zero plot for the case ofM D 7 is therefore given by

Re

Imz−plane

7th
order

1

The difference equation satisfied by the input and output of the LTI system is
the convolution

yŒn� D

M
X

kD0

akxŒn � k�:
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The input and output also satisfy the difference equation

yŒn� � ayŒn � 1� D xŒn� � aM C1xŒn � M � 1�:

3 Frequency response for rational system

functions

If a stable LTI system has a rational system function, then its frequency

response has the form

H.ej!/ D

PM
kD0 bke�j!k

PN
kD0 ake�j!k

:

We want to know the magnitude and phase associated with the frequency

response. To this end, it is useful to expressH.ej!/ in terms of the poles and

zeros ofH.z/:

H.ej!/ D

�

b0

a0

�
QM

kD1.1 � cke�j!/
QN

kD1.1 � dke�j!/
:

It follows that

jH.ej!/j D

ˇ

ˇ

ˇ

ˇ

b0

a0

ˇ

ˇ

ˇ

ˇ

QM
kD1 j1 � cke�j!j

QN
kD1 j1 � dke�j! j

:

ThereforejH.ej!/j is the product of the magnitudes of all thezero factorsof

H.z/ evaluated on the unit circle,divided by the product of the magnitudes of

all thepole factorsevaluated on the unit circle.

Thegain in dB of H.ej!/, also called thelog magnitude, is given by

Gain in dBD 20 log10 jH.ej!/j;

11

which for a rational system function takes the form

20 log10 jH.ej!/j D 20 log10

ˇ

ˇ

ˇ

ˇ

b0

a0

ˇ

ˇ

ˇ

ˇ

C

M
X

kD1

20 log10 j1 � cke�j!j

�

N
X

kD1

20 log10 j1 � dke�j!j:

Also

Attenuation in dBD �Gain in dB:

Thus a60dB attenuation at frequency! corresponds tojH.ej!/j D 0:001.

Also,

20 log10 jY.ej!/j D 20 log10 jH.ej!/j C 20 log10 jX.ej!/j:

The phase response for a rational system function is

^H.ej!/ D ^

�

b0

a0

�

C

M
X

kD1

^Œ1 � cke�j! � �

N
X

kD1

^Œ1 � dke�j! �:

The zero factors contribute with a plus sign and the pole factors with a minus.

In the above equation, the phase of each term is ambiguous, since any integer

multiple of 2� can be added at each value of! without changing the value of

the complex number. When calculating the phase with a computer, the angle

returned will generally be theprincipal value ARGŒH.ej!/�, which lies in the

range�� to �. This phase will generally be a discontinuous function,

containing jumps of2� radians whenever the phase wraps. Appropriate

multiples of2� can be added or subtracted, if required, to yield the continuous

phase function argŒH.ej!/�.
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0

ARGŒH.ej!/�

argŒH.ej!/�

!

!

�

�

�

�

��

��

�2�

�3�

�4�

3.1 Frequency response of a single pole or zero

Consider a single zero factor of the form

.1 � rej� e�j!/

in the frequency response. The magnitude squared of this factor is

j1 � rej� e�j!j2 D .1 � rej� e�j!/.1 � re�j� ej!/

D 1 C r2 � 2r cos.! � �/;

so the log magnitude in dB is

20 log10 j1 � rej� e�j!j D 10 log10Œ1 C r2 � 2r cos.! � �/�:

The principle value of the phase for the factor is

ARGŒ1 � rej� e�j! � D arctan

�

r sin.! � �/

1 � r cos.! � �/

�

:

These functions are periodic in! with period2�.
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The following plot shows the frequency response forr D 0:9 and three
different values of� :
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Note that

� The gain dips at! D � . As � changes, the frequency at which the dip
occurs changes.

� The gain is maximised for! � � D �, and forr D 0:9 the magnitude of
the resulting gain is

10 log10.1 C r2 C 2r/ D 20 log10.1 C r/ D 5:57dB:

� The gain is minimised for! D � , and forr D 0:9 the resulting gain is

10 log10.1 C r2 � 2r/ D 20 log10 j1 � r j D �20dB:

� The phase is zero at! D � .

Note that if the factor.1 � rej� ej!/ occurs in the denominator, thereby
representing a pole factor, then the entire analysis holds with the exception that
the sign of the log magnitude and the phase changes.

14



The frequency response can be sketched from the pole-zero plot using a simple
geometric construction. Note firstly that the frequency response corresponds to

an evaluation ofH.z/ on the unit circle. Secondly, the complex value of each
pole and zero can be represented by a vector in the z-plane from the pole or
zero to a point on the unit circle.

Take for example the case of a single zero factor

H.z/ D .1 � rej� z�1/ D
z � rej�

z
r < 1;

which corresponds to a pole atz D 0 and a zero atz D rej� .

z−plane

Im

Re

v1

v2 v3

� !

�3

If the vectorsv1, v2, andv3 D v1 � v2 represent respectively the complex
numbersej! , rej� , andej! � rej� , then

jH.ej!/j D j1 � rej� e�j!j D

ˇ

ˇ

ˇ

ˇ

ˇ

ej! � rej�

ej!

ˇ

ˇ

ˇ

ˇ

ˇ

D
jv3j

jv1j
D jv3j:

The phase is

^H.ej!/ D ^.1 � rej� e�j!/ D ^.ej! � rej� / � ^.ej!/

D ^.v3/ � ^.v1/ D �3 � �1 D �3 � !:

A vector such asv3 from a zero to the unit circle is referred to as azero
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vector, and a vector from a pole to the unit circle is called apole vector.

Consider now the pole zero system depicted below:

z−plane

Im

Re

v1
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v2

v3

v3 !�3

The frequency response for the single zero at different values ofr and� D � is
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Note that the log magnitude dips more sharply asr approaches1 (and at
! D � tends to�1 asr tends towards1). The phase function has positive
slope around! D � . This slope increases asr approaches1, and becomes
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infinite for r D 1. In this case the phase function is discontinuous, with a jump

of � radians at! D � .

If r increases still further, to lie outside of the unit circle,

z−plane

Im

Re

v1

v2

v3
�3

�3

then the frequency response becomes
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3.2 Frequency response with multiple poles and zeros

In general, the z-transform of a LTI system can be factorisedas

H.z/ D

�

b0

a0

�
QM

kD1.1 � ckz�1/
QN

kD1.1 � dkz�1/
D

�

b0

a0

�

zN �M

QM
kD1.z � ck/

QN
kD1.z � dk/

:

Depending on whetherN is greater than or less thanM , the factorzN �M

represents eitherN � M zeros at the origin, orM � N poles at the origin. In

either case, the z-transform can be written in the form

H.z/ D K

QM0

iD0.z � zk/
QN0

iD0.z � pk/

wherez1; : : : ; zM0
are the zeros, andp1; : : : ; pN0

the poles ofH.z/. This

representation could also be obtained by merely factorising H.z/ in terms ofz

rather thanz�1.

The frequency response of this system is

H.ej!/ D K

QM0

iD0.ej! � zk/
QN0

iD0.ej! � pk/
:

The magnitude is therefore

jH.ej!/j D jKj

QM0

iD0 jej! � zkj
QN0

iD0 jej! � pkj
;

and the phase is

^H.ej!/ D

M0
X

iD0

^.ej! � zk/ �

N0
X

iD0

^.ej! � pk/:

In the z-plane,.ej! � zk/ is simply the vector from the zerozk to the point on

the unit circle. The termjej! � zkj is the length of this vector, and

^.ej! � zk/ is the angle that it makes with the positive real axis. Similarly, the
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term.ej! � pk/ corresponds to the vector from the polepk to the point on the

unit circle.

It follows then that the the magnitude response is the product of the lengths of
the zero vectors, divided by the product of the lengths of thepole vectors. The

phase response is the sum of the angles of the zero vectors, minus the sum of
the angles of the pole vectors. Thus, for the two pole, two zero system

z−plane

Im

Re

p1

p2

z1z2

�1

�2

�1�2

U1

U2

V1

V2

the frequency response is

jH.ej!/j D jKj
U1U2

V1V2

^H.ej!/ D �1 C �2 � .�1 C �2/:

HereK is a constant factor which cannot be determined from the polezero
diagram alone, but only serves to scale the magnitude.

4 Realisation structures for digital filters

The difference equation, the impulse response, and the system function are all
equivalent characterisations of the input-output relation for a LTI discrete-time
system. For implementation purposes, systems described byLCCDEs can be
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implemented by structures consisting of an interconnection of the basic

operations of addition, multiplication by a constant, and delay. The desired

form for the interconnections depends on the technology to be used.

Discrete-time filters are often represented in the form of block or signal flow

diagrams, which are convenient for representing the difference equations or

transfer functions.

For example, the system with the difference equation

yŒn� D xŒn � 1� � b1yŒn � 1� C b2yŒn � 2� C b3yŒn � 3�

can be represented in a block diagram form as

x[n−1]

y[n]

y[n−1]

y[n−3]

y[n−2]

x[n]
z�1

z�1

z�1

z�1

�b1

b2

b3

The symbolz�1 represents a delay of one unit of time, and the arrows

represent multipliers (with the constant multiplication factors next to them).

The equivalent signal flow diagram is

20



y[n−1]

y[n−3]

y[n−2]

x[n] y[n]

z�1

z�1

z�1

z�1

�b1

b2

b3

The relationship between the diagrams and the difference equation is clear.

Many alternative filter structures can be developed, and they differ mainly with

respect to their numerical stability and the effects of quantisation on their

performance. A discussion of these effects can be found in many DSP texts.
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