EEE401F: Digital Signal Processing

Class Test 1

18 March 2004

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has five questions, totalling 25 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Find and sketch the unit step response of the causal LTI processor defined by the following recurrence formula:

$$
y[n]=-0.5 y[n-1]+x[n]
$$

Is the resulting sequence stable?

With input $x[n]=u[n]$, we must have $y[-1]=y[-2]=\cdots=0$ since the system is causal. Thus

$$
y[n]=-0.5 y[n-1]+u[n]
$$

yields

$$
\begin{aligned}
& y[0]=u[0]=1 \\
& y[1]=-\frac{1}{2}+\frac{2}{2}=\frac{1}{2} \\
& y[3]=-\frac{1}{4}+\frac{4}{4}=\frac{3}{4} \\
& y[4]=-\frac{3}{8}+\frac{8}{8}=\frac{5}{8} \\
& y[5]=-\frac{5}{16}+\frac{16}{16}=\frac{11}{16}
\end{aligned}
$$

and so on:

2. (5 marks) Find the impulse response of an overall system formed by cascading two LTI processors with the impulse responses:

$$
h_{1}[n]= \begin{cases}\frac{1}{n} & (0<n<4) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h_{2}[n]= \begin{cases}n & (0<n<4) \\ 0 & \text { otherwise }\end{cases}
$$

The signals are

so the impulse response of the overall system is the convolution of the two:

3. (5 marks) Find a nonrecursive recurrence formula which, from the DSP point of view, is equivalent to the following recursive formula for a causal filter:

$$
y[n]=y[n-1]+x[n]-x[n-7] .
$$

What is the relative computational economy of the recursive and nonrecirsive versions?

Taking the z-transform of $y[n]=y[n-1]+x[n]-x[n-7]$ we get

$$
Y(z)\left(1-z^{-1}\right)=X(z)\left(1-z^{-7}\right)
$$

so

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\left(1-z^{-7}\right)}{\left(1-z^{-1}\right)}=\frac{\left(z^{7}-1\right)}{z^{6}(z-1)}=\frac{1}{\left(1-z^{-1}\right)}-\frac{z^{-7}}{\left(1-z^{-1}\right)}
$$

The system has 6 poles at $z=0$, and 1 pole at $z-1$. Since it is causal, thr ROC must be outside the outermost pole: $|z|>1$. Inverting the partial fraction expansion above under this condition yields $h[n]=u[n]-u[n-7]$. This is the nonrecursive specification of the filter.

The nonrecursive form for the filter requires 6 additions per output sample (since the seven multiplications are by unity). The recursive form requires 2 additions.
4. (5 marks) A signal has the z-transform

$$
X(z)=\frac{1}{z(z-1)(2 z-1)},
$$

with region of convergence $|z|>1$. Draw a pole-zero plot of the signal in the z-plane, and use the method of partial fractions to recover the signal $x[n]$. Is the signal stable? Is the signal causal?

In the z -plane the signal is

Therefore the signal is causal (ROC outside outermost pole) but not stable (ROC does not contain the unit circle).

The z-transform can be written as

$$
H(z)=\frac{\frac{1}{2} z^{-3}}{\left(1-z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}=\frac{1}{2} z^{-3}\left[\frac{a}{\left(1-z^{-1}\right)}+\frac{b}{\left(1-\frac{1}{2} z^{-1}\right)}\right]
$$

where it is easily shown that $a=2$ and $b=-1$. The term in square brackets inverts quite simply to

$$
x_{1}[n]=2 u[n]-\left(\frac{1}{2}\right)^{n} u[n],
$$

and the inverse is this quantity delayed by 3 samples and scaled by $1 / 2$:

$$
\begin{aligned}
x[n] & =\frac{1}{2}\left(2 u[n-3]-(1 / 2)^{n-3} u[n-3]\right) \\
& =u[n-3]-(1 / 2)^{n-2} u[n-3] .
\end{aligned}
$$

5. (5 marks) Consider the system below:

where the cutoff of the LPF is at $\min (\pi / L, \pi / M)$. The Fourier transform of the input signal $x[n]$ is

For $M=5$ and $L=3$, draw the transforms of the signals at each stage, and specify the maximum value of ω_{0} such that $\tilde{X}_{d}\left(e^{j \omega}\right)=a X\left(e^{j M \omega / L}\right)$ for some a.

The signals are as follows:

At the output of the lowpass filter, we have no loss of data (truncation) as long as

$$
\frac{\omega_{0}}{3}<\frac{\pi}{5}
$$

This is the condition under which $\tilde{X}_{d}\left(e^{j \omega}\right)$ is just a stretched-out replica of $X\left(e^{j \omega}\right)$. The maximum value of ω_{o} is therefore $3 \pi / 5$.

