EEE4001F: Digital Signal Processing

Class Test 2
22 April 2010

Name:
Student number:

1. (5 marks) Consider the system below

where $T=0.001$ s and

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & |\omega| \leq 0.5 \pi \\ 0 & \text { otherwise }\end{cases}
$$

for $-\pi \leq \omega \leq \pi$. Find the output $y[n]$ if the input is $x(t)=\cos (400 \pi t)+\cos (600 \pi t)$.

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

2. (5 marks) Consider the following discrete-time signals $x[n]$ and $y[n]$:

$$
x[n]=0.2 \cos (0.2 \pi n) \quad \text { and } \quad y[n]=0.2 \sin (0.2 \pi n)
$$

(a) Show that the 10-point DFT of $x[n]$ is $X[k]=\delta[k-1]+\delta[k-9]$ over the range $k=0, \ldots, 9$.
(b) Assuming that the 10 -point DFT of $y[n]$ is $Y[k]=-j(\delta[k-1]-\delta[k-9])$, use the DFT to determine a closed-form expression for the 10-point circular convolution of $x[n]$ and $y[n]$.
3. (5 marks) A stable system is characterised by the following LCCDE:

$$
y[n+2]-y[n+1]+\frac{1}{2} y[n]=x[n+1] .
$$

(a) Draw a pole-zero plot of the system.
(b) Roughly sketch the magnitude response of the system.
(c) Assuming the system response represents a band-pass filter at a frequency of $\pi / 4$ radians/sample, what is the centre frequency of the passband if an analog signal is sampled at 12 kHz before filtering?
4. (5 marks) A particular DSP system is sampled at 48 kHz , and requires a highpass filter with a passband ripple of 0.1 dB , a transition band of 200 Hz , stopband attenuation of 60 dB , and a cutoff frequency of 1200 Hz . Sketch the appropriate design constraints that the filter must satisfy, specifying parameter values where appropriate. Your frequency axis should be in units of radians per sample.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d} X\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{(1-a z-1)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z-1}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1+z^{-2}}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

