EEE4001F: Digital Signal Processing

Class Test 1

17 March 2011

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) If $x[n]$ is the signal below

then plot the following:
(a) $y_{1}[n]=x[2 n-2]$
(b) $y_{2}[n]=x[-n-1]$
(c) $y_{3}[n]=x[n] * \delta[n-1]$
(d) $y_{4}[n]=x[n-1] * u[n-1]$
(e) $y_{5}[n]=x[n]-x[n-1]$.

2. (5 marks) Consider the system below

where $h[n]=\delta[n]-2 \delta[n-1]-\delta[n-2]$.
(a) Find $H\left(e^{j \omega}\right)$, the Fourier transform of $h[n]$.
(b) Find and plot the effective impulse response $h_{\text {eff }}[n]$ linking the input $x[n]$ and the output $y[n]$.
(c) Give an expression for the effective system transfer function $H_{\text {eff }}\left(e^{j \omega}\right)$ in terms of $H\left(e^{j \omega}\right)$.
(a) The effective impulse response is $h_{\text {eff }}[n]=h[n] * h[-n]$, shown below:

(b) The Fourier transform is

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n}=\sum_{n=-\infty}^{\infty}(\delta[n]-2 \delta[n-1]-\delta[n-2]) e^{-j \omega n} \\
& =1-2 e^{-j \omega}-e^{-j 2 \omega}
\end{aligned}
$$

(c) The effective Fourier transform is

$$
H_{\text {eff }}\left(e^{j \omega}\right)=\mathcal{F}\{h[n]\} \mathcal{F}\{h[-n]\}=H\left(e^{j \omega}\right) H\left(e^{-j \omega}\right) .
$$

Interestingly, but not required for the answer, one can show that this evaluates to a real-valued transform

$$
H_{\mathrm{eff}}\left(e^{j \omega}\right)=6-2 \cos (2 \omega)
$$

for the given $h[n]$. The overall filter is therefore zero phase. In general if $h[n]$ is real then $H\left(e^{-j \omega}\right)=H^{*}\left(e^{j \omega}\right)$, and

$$
H_{\mathrm{eff}}\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2}
$$

will have a zero phase response - which is a special case of linear phase.
3. (5 marks) Suppose we have the following cascade of all-pole filters:

where

$$
H_{1}\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \omega}} \quad \text { and } \quad H_{2}\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{3} e^{-j \omega}}
$$

(a) Find $h[n]$ such that the input $x[n]$ and output $y[n]$ satisfy the relationship $y[n]=h[n] * x[n]$.
(b) Find $g[n]$ such that $x[n]=g[n] * y[n]$.
(a) The given relationship in the frequency domain is $Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$. Since $Y\left(e^{j \omega}\right)=H_{1}\left(e^{j \omega}\right) H_{2}\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$ we must have

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =H_{1}\left(e^{j \omega}\right) H_{2}\left(e^{j \omega}\right)=\frac{1}{\left(1-\frac{1}{2} e^{-j \omega}\right)\left(1-\frac{1}{3} e^{-j \omega}\right)} \\
& =\frac{3}{1-\frac{1}{2} e^{-j \omega}}-\frac{2}{1-\frac{1}{3} e^{-j \omega}},
\end{aligned}
$$

and the inverse Fourier transform is the required impulse response

$$
h[n]=3\left(\frac{1}{2}\right)^{n} u[n]-2\left(\frac{1}{3}\right)^{n} u[n] .
$$

(b) The given relationship in the frequency domain is $X\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$. Since $Y\left(e^{j \omega}\right)=H_{1}\left(e^{j \omega}\right) H_{2}\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$ we must therefore have

$$
\begin{aligned}
G\left(e^{j \omega}\right) & =\frac{1}{H_{1}\left(e^{j \omega}\right) H_{2}\left(e^{j \omega}\right)}=\left(1-\frac{1}{2} e^{-j \omega}\right)\left(1-\frac{1}{3} e^{-j \omega}\right) \\
& =1-\frac{5}{6} e^{-j \omega}+\frac{1}{6} e^{-j 2 \omega}
\end{aligned}
$$

The Fourier inverse is the quantity required in the time domain:

$$
g[n]=\delta[n]-\frac{5}{6} \delta[n-1]+\frac{1}{6} \delta[n-2] .
$$

4. (5 marks) Consider the minimum-phase system with transfer function

$$
H(z)=\frac{1-(1 / 2) z^{-1}}{1-(1 / 3) z^{-1}}
$$

where the region of convergence is $|z|>\frac{1}{3}$.
(a) Find a difference equation linking the input $x[n]$ and the output $y[n]$.
(b) Find the impulse response of the system.
(c) Find the transfer function of a causal and stable system that is the inverse of $H(z)$, and sketch the poles, zeros, and region of convergence of this inverse system in the z-plane.
(a) Since $Y(z)=H(z) X(z)$ we have $Y(z)\left(1-\frac{1}{3} z^{-1}\right)=X(z)\left(1-\frac{1}{2} z^{-1}\right)$. Inverting gives the difference equation

$$
y[n]-\frac{1}{3} y[n-1]=x[n]-\frac{1}{2} x[n-1] .
$$

(b) The impulse response is the inverse transform of $H(z)$. Since

$$
H(z)=\frac{1}{1-\frac{1}{3} z^{-1}}-\frac{1}{2} \frac{z^{-1}}{\left(1-\frac{1}{3} z^{-1}\right)}
$$

the inverse for the given ROC is $h[n]=\left(\frac{1}{3}\right)^{n} u[n]-\frac{1}{2}\left(\frac{1}{3}\right)^{n-1} u[n-1]$.
(c) The transfer function of the inverse system is

$$
G(z)=\frac{1}{H(z)}=\frac{1-\frac{1}{3} z^{-1}}{1-\frac{1}{2} z^{-1}}
$$

The two possible ROCs are $|z|<1 / 2$ and $|z|>1 / 2$. For causal and stable the second is appropriate: $|z|>1 / 2$. This system has a zero at $z=1 / 3$ and a pole at $z=1 / 2$, and the sketch follows.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n} d X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a{ }^{2} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

