EEE4001F: Digital Signal Processing

Class Test 2

20 April 2012

SOLUTIONS

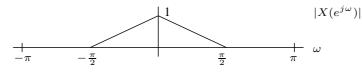
Name:

Student number:

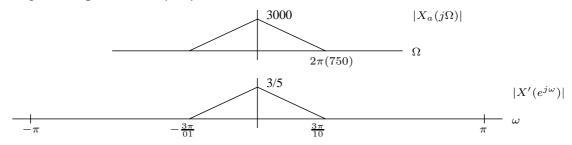
Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) An analog signal $x_a(t)$ is known to have no frequency content higher than 1000 Hz. We sample $x_a(t)$ at $F_s = 3000$ Hz, and the resulting magnitude spectrum, plotted versus discrete frequency ω , is

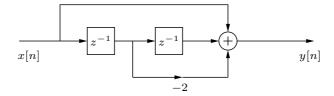


- (a) Sketch the magnitude spectrum (versus discrete frequency ω) that would have resulted had we sampled at $F_s = 5000$ Hz.
- (b) What is highest frequency (in Hz) present in $x_a(t)$?
- (c) What is the lowest sampling frequency that can be used without any aliasing?
- (a) Using the information given we can find the original continuous time signal to have the magnitude spectrum $X_a(j\Omega)$ below, and the corresponding resampled signal has magnitude spectrum $X'(e^{j\omega})$:



- (b) From the previous solution (or otherwise) the highest frequency present is 750 Hz.
- (c) We need to sample with $F_s \ge 2(750) = 1500$ Hz.

2. (5 marks) Consider the system below, where z^{-1} represents a unit sample delay:



(a) Show that the transfer function is

$$H(z) = 1 - 2z^{-1} + z^{-2}$$

and determine the impulse response.

- (b) Sketch the magnitude response and phase response of the filter. Which frequencies are completely blocked?
- (a) In the time domain the system obeys the recursion

$$y[n] = x[n] - 2x[n-1] + x[n-2].$$

Taking the z-transform gives $Y(z) = X(z)[1 - 2z^{-1} + z^{-2}]$, so

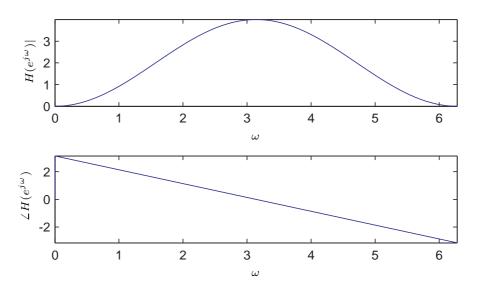
$$H(z) = \frac{Y(z)}{X(z)} = 1 - 2z^{-1} + z^{-2}.$$

Since this is an all-zero filter the ROC is the entire z-plane, and the filter is stable and causal. The impulse response is the inverse: $h[n] = \delta[n] - 2\delta[n-1] + \delta[n-2]$.

(b) Since

$$H(z) = \frac{(z-1)(z-1)}{z^2}$$

the system has two zeros at z = 1 and two poles at the origin. Using graphical methods it is easy to see that the magnitude and phase response of the system is as follows:



DC is the only frequency that is completely blocked.

3. (5 marks) A linear time invariant system has system function

$$H(z) = 1 - 2z^{-1} + z^{-2}.$$

Determine the output y[n] when the input is

$$x[n] = 3\cos\left(\frac{\pi}{3}n + \frac{\pi}{6}\right).$$

Write your answer as $y[n] = A\cos(Bn + C)$ for appropriate values of A, B, and C.

Since

$$x[n] = 3/2e^{j(\pi/3n + \pi/6)} + 3/2e^{-j(\pi/3n + \pi/6)} = 3/2e^{j\pi/6}e^{j\pi/3n} + 3/2e^{-j\pi/6}e^{-j\pi/3n} + 3/2e^{-j\pi/6}e^{$$

the output is

$$y[n] = 3/2e^{j\pi/6}H(e^{j\pi/3})e^{j\pi/3n} + 3/2e^{-j\pi/6}H(e^{-j\pi/3})e^{-j\pi/3n}$$

= 3/2H(e^{j\pi/3})e^{j(\pi/3n+\pi/6)} + 3/2H(e^{-j\pi/3})e^{-j(\pi/3n+\pi/6)}.

Since $H(e^{j\pi/3}) = 1e^{j2\pi/3}$ and $H(e^{-j\pi/3}) = 1e^{-j2\pi/3}$ the output can be written as

$$y[n] = 3/2e^{j2\pi/3}e^{j(\pi/3n+\pi/6)} + 3/2e^{-j2\pi/3}e^{-j(\pi/3n+\pi/6)} = 3\cos(\pi/3n+5\pi/6).$$

Thus A = 3, $B = \pi/3$, and $C = 5\pi/6$.

4. (5 marks) The DFT operation can be expressed in the following matrix form:

$$\mathbf{X} = \mathbf{D}_N \mathbf{x},$$

where X and x are N-dimensional vectors and D_N is called the DFT matrix.

- (a) Write down in full the matrix \mathbf{D}_4 in terms of the quantity $W_4 = e^{-j\frac{2\pi}{4}}$.
- (b) Suppose a programming language has a function fft such that $\mathbf{X} = \texttt{fft}(\mathbf{x})$. Explain how you could use this function to construct the matrix \mathbf{D}_N .
- (a) Since

$$X[k] = \sum_{n=0}^{3} x[n]e^{-j\frac{2\pi}{4}kn} = \sum_{n=0}^{3} x[n]W_4^{kn}$$

we can write

$$X[k] = x[0] + x[1]W_4^k + x[2]W_4^{2k} + x[3]W_4^{3k}$$
$$= x[0] + W_4^k x[1] + W_4^{2k} x[2] + W_4^{3k} x[3].$$

Thus we can write

$$\mathbf{X} = \begin{pmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & W_4 & W_4^2 & W_4^3 \\ 1 & W_4^2 & W_4^4 & W_4^6 \\ 1 & W_4^3 & W_4^6 & W_4^9 \end{pmatrix} \begin{pmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{pmatrix} = \mathbf{D}_4 \mathbf{x}.$$

The factors W_4^k in the above matrix \mathbf{D}_4 can always be written in an equivalent form with $k \in \{0, 1, 2, 3\}$, although that does somewhat obscure the structure.

(b) If we form the N-dimensional ith unit vector ê_i (all elements zero except for a 1 in position i), then fft(ê_i) will give the ith column of D_N. Thus we can construct all of D_N by calling the fft function N times with each of the unit vectors.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shif
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$rac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{\frac{az^{-1}}{az^{-1}}}{\frac{az^{-1}}{(1-az^{-1})^2}}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
	~	

_