## EEE4001F: Digital Signal Processing

Class Test 1
20 March 2015

## Name:

Student number:

1. (5 marks) Suppose $x[n]$ is as given below:


Plot the following:
(a) $y_{1}[n]=x[2 n]$
(b) $y_{2}[n]=x[2 n-1]$
(c) $y_{3}[n]=x[n]-x[n-1]$
(d) $y_{4}[n]=\sum_{k=-\infty}^{n} x[k]$
(e) $y_{5}[n]=x[n] * u[n]$.

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.

2. (5 marks) A linear time-invariant system with impulse response $h[n]=a^{-n} u[-n]$ (for $0<a<1$ ) is driven by the unit step input $x[n]=u[n]$. Sketch the signals $h[n]$ and $x[n]$ and find the output $y[n]=h[n] * x[n]$ for values $n=2$ and $n=-2$.
3. (4 marks) Find a closed-form expression for the frequency response $H\left(e^{j \omega}\right)$ of the FIR filter with impulse response

$$
h[n]=a^{n}(u[n]-u[n-10]) .
$$

Is the filter causal? Why?
4. (6 marks) A causal digital filter with input $x[n]$ and output $y[n]$ is governed by the relationship

$$
y[n]=x[n]+x[n-2]+y[n-1]-0.5 y[n-2] .
$$

(a) Show that the system function can be written as

$$
H(z)=\frac{z^{2}+1}{\left(z-z_{0}\right)\left(z-z_{0}^{*}\right)}
$$

where $z_{0}=(1+j) / 2$ and $z_{0}^{*}$ is the complex conjugate of $z_{0}$.
(b) Sketch the poles and zeros of this filter in the z-plane.
(c) Determine an expression for the impulse response of the filter. You may write your solution in terms of undetermined coefficients along with a set of simultaneous equations that specify them.
(d) Is the filter stable?

## Fourier transform properties

| Sequences $x[n], y[n]$ | Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$ | Property |
| :---: | :---: | :---: |
| $a x[n]+b y[n]$ | $a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$ | Linearity |
| $x\left[n-n_{d}\right]$ | $e^{-j \omega n_{d}} X\left(e^{j \omega}\right)$ | Time shift |
| $e^{j \omega_{0} n} x[n]$ | $X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$ | Frequency shift |
| $x[-n]$ | $X\left(e^{-j \omega}\right)$ | Time reversal |
| $n x[n]$ | $j \frac{d X\left(e^{j \omega}\right)}{d \omega}$ | Frequency diff. |
| $x[n] * y[n]$ | $X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$ | Convolution |
| $x[n] y[n]$ | $\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$ | Modulation |

## Common Fourier transform pairs

| Sequence | Fourier transform |
| :---: | :---: |
| $\delta[n]$ | 1 |
| $\delta\left[n-n_{0}\right]$ | $e^{-j \omega n_{0}}$ |
| $1(-\infty<n<\infty)$ | $\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$ |
| $a^{n} u[n] \quad(\|a\|<1)$ | $\frac{1}{1-a e^{-j \omega}}$ |
| $u[n]$ | $\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$ |
| $(n+1) a^{n} u[n] \quad(\|a\|<1)$ | $\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$ |
| $\frac{\sin \left(\omega_{c} n\right)}{\pi n}$ | $X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$ |
| $x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$ | $\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$ |
| $e^{j \omega_{0} n}$ | $\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$ |

## Common z-transform pairs

| Sequence | Transform | ROC |
| :---: | :---: | :---: |
| $\delta[n]$ | 1 | All $z$ |
| $u[n]$ | $\frac{1}{1-z^{-1}}$ | $\|z\|>1$ |
| $-u[-n-1]$ | $\frac{1}{1-z^{-1}}$ | $\|z\|<1$ |
| $\delta[n-m]$ | $z^{-m}$ | All $z$ except 0 or $\infty$ |
| $a^{n} u[n]$ | $\frac{1}{1-a z-1}$ | $\|z\|>\|a\|$ |
| $-a^{n} u[-n-1]$ |  | $\|z\|<\|a\|$ |
| $n a^{n} u[n]$ | $\frac{1-a z-1}{\left(1-a z^{-1}-1\right.}{ }^{\frac{1}{2}}$ | $\|z\|>\|a\|$ |
| $-n a^{n} u[-n-1]$ | $\frac{a z-1)}{\left(1-a z^{-1}\right)^{2}}$ | $\|z\|<\|a\|$ |
| $\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$ | $\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$ | $\|z\|>0$ |
| $\cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$ | $\|z\|>1$ |
| $r^{n} \cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$ | $\|z\|>r$ |

