EEE4001F: Digital Signal Processing Class Test
 13 April 2017

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) The input $x[n]$ and output $y[n]$ of a system are linked by the relation

$$
y[n]=T\{x[n]\}=x[-n] .
$$

Answer the following questions, giving reasons:
(a) Is the system additive?
(b) Is the system homogeneous?
(c) Is the system linear?
(d) Is the system time invariant?
(e) Is the system causal?

Suppose $y_{1}[n]=T\left\{x_{1}[n]\right\}=x_{1}[-n]$ and $y_{2}[n]=T\left\{x_{2}[n]\right\}=x_{2}[-n]$.
(a) The response to $x[n]=x_{1}[n]+x_{2}[n]$ is

$$
y[n]=T\left\{x_{1}[n]+x_{2}[n]\right\}=x_{1}[-n]+x_{2}[-n]=y_{1}[n]+y_{2}[n],
$$

so the system is additive.
(b) The response to $x[n]=a x_{1}[n]$ is

$$
y[n]=T\left\{a x_{1}[n]\right\}=a x_{1}[-n]=a y_{1}[n],
$$

so the system is homogeneous.
(c) Since it is both additive and homogeneous the system is linear.
(d) The response to $x[n]=x_{1}[n-p]$ is

$$
y[n]=T\left\{x_{1}[n-p]\right\}=x_{1}[-(n-p)] \neq y_{1}[n-p]
$$

so the system is not time invariant.
(e) To calculate the output $y[n]$ at time $n=10$, say, requires knowing the input $x[10]$ which is in the future. Thus the system is not causal.
2. (5 marks) This question deals with convolution and time reversal.
(a) Consider the signals below:

Find $y[n]=x_{1}[n] * x_{2}[n]$.
(b) Prove the time reversal property for the z-transform: if $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$ then $x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(1 / z)$.
(c) Suppose $g[n]=x[n] * x_{r}[n]$, where $x_{r}[n]=x[-n]$ is the time reversal of $x[n]$. Show that $g[n]$ is symmetric around the origin, or $g[n]=g[-n]$.
(a) Output is as follows, using the method of your choice:

(b) Suppose $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)=\sum_{n=\infty}^{\infty} x[n] z^{-n}$. We can derive the time-reversal property:

$$
\mathcal{Z}\{x[-n]\}=\sum_{n=-\infty}^{\infty} x[-n] z^{-n}=\sum_{m=-\infty}^{\infty} x[m] z^{m}=X(1 / z)
$$

so $x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(1 / z)$. Thus replacing z with $1 / z$ in frequency corresponds to reversing the signal in the time domain.
(c) Since convolution in time is multiplication in frequency we have

$$
g[n]=x[n] * x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) X(1 / z)=G(z) .
$$

Observing that $G(z)=G(1 / z)$ we can conclude that $g[n]=g[-n]$. Thus convolving a signal with its time reversal always gives a symmetric output.
3. (5 marks) A lowpass filter is described by the following system function:

$$
H(z)=\frac{1-a}{1-a z^{-1}} \text { with ROC }|z|>|a|
$$

(a) Give an expression for the impulse response of the filter.
(b) Give an expression for the frequency response of the filter. What requirements are there on a for this to exist?
(c) Determine the value of the coefficient a such that the filter has a -3 dB cutoff frequency of $\omega=\pi / 4$ radians per sample.
(a) Using the transform pair

$$
a^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}} \text { for }|z|>|a|
$$

we obtain the impulse response

$$
h[n]=(1-a) a^{n} u[n] .
$$

(b) The frequency response is

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1-a}{1-a e^{-j \omega}}
$$

This requires that the ROC include the unit circle, so $|a|<1$.
(c) We require that the frequency $\omega=\pi / 4$ be at the half-power point, or $\left|H\left(e^{j \pi / 4}\right) / H\left(e^{j 0}\right)\right|^{2}=1 / 2$. Since the DC gain is

$$
H\left(e^{j 0}\right)=\frac{1-a}{1-a}=1
$$

this requires finding a such that $\left|H\left(e^{j \pi / 4}\right)\right|^{2}=1 / 2$. Noting that $e^{j \pi / 4}=1+j$ we get

$$
\begin{aligned}
\left|H\left(e^{j \pi / 4}\right)\right|^{2} & =H\left(e^{j \pi / 4}\right) H^{*}\left(e^{j \pi / 4}\right)=\frac{1-a}{(1-a(1+j))} \frac{1-a}{(1-a(1-j))} \\
& =\frac{1-a}{((1-a)-a j)} \frac{1-a}{((1-a)+a j)}=\frac{(1-a)^{2}}{(1-a)^{2}+a^{2}}=\frac{1}{2}
\end{aligned}
$$

so $(1-a)^{2}=a^{2}$ and thus $a=1 / 2$.
4. (5 marks) The input to an anticausal LTI system is

$$
x[n]=u[-n-1]+(1 / 2)^{n} u[n] .
$$

The Z-transform of the output of the system is

$$
Y(z)=\frac{-\frac{1}{2} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)}
$$

(a) Determine the system function $H(z)$ and specify the ROC.
(b) Show that the ROC of $Y(z)$ is $1 / 2<|z|<1$ and find the time-domain output $y[n]$.
(a) Here

$$
X(z)=-\frac{1}{1-z^{-1}}+\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{-\frac{1}{2} z^{-1}}{\left(1-z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}
$$

with ROC_{x} as $1 / 2<|z|<1$. Given the output, we have

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{-\frac{1}{2} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)} \frac{\left(1-z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}{-\frac{1}{2} z^{-1}}=\frac{1-z^{-1}}{1+z^{-1}}
$$

This has a pole at $z=-1$, so for an anticausal system we require $|z|<1$ as ROC_{h}.
(b) We require that ROC_{y} contain $\mathrm{ROC}_{x} \cap \mathrm{ROC}_{h}=1 / 2<|z|<1$. Now $Y(z)$ has poles at $z=1 / 2$ and $z=-1$, so possible ROCs are $|z|<1 / 2,1 / 2<|z|<1$, and $|z|>1$. Thus we must have $1 / 2<|z|<1$ for ROC_{y}. Using partial fractions we can write

$$
Y(z)=\frac{1 / 3}{1+z^{-1}}-\frac{1 / 3}{1-\frac{1}{2} z^{-1}}
$$

and the required inverse is

$$
y[n]=-\frac{1}{3}(-1)^{n} u[-n-1]-\frac{1}{3}(1 / 2)^{n} u[n] .
$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d}} X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
$\begin{gathered} \cos \left(\omega_{0} n\right) u[n] \\ r^{n} \cos \left(\omega_{0} n\right) u[n] \end{gathered}$	$\begin{gathered} \frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \\ \frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}} \end{gathered}$	$\|z\|>1$ $\|z\|>\|r\|$

