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Abstract

This work outlines the development of a general imaging model for use in autofocus,
astigmatism correction, and resolution analysis. The model is based on the modulation
transfer function of the tmaging system in the presence of aberrations, in particular
defocus. The extension of the model to include astigmatism is also included.

The signals used are related to the ratios of the Fourier transforms of images captured
under different operating conditions. Methods are developed for working with these
signals in a consistent manner.

The model described is then applied to the problem of autofocus. A general autofocus
algorithm is presented and results given which reflect the predictive properties of this
model.

The 1maging system used for the generation of results was a scanning electron micro-
scope, although the conclusions should be valid across a far wider range of instruments.
It is however the specific requirements of the SEM that make the generalisation pre-
sented here particularly useful.
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Chapter 1

Introduction

This thesis discusses a proposed method of autofocus for a large class of imaging systems.
Furthermore, it extends the autofocus principle to that of astigmatism correction for those

systems which exhibit this aberration and have a means of correcting for it.

The imaging system for which results are presented is a type 1 scanning electron microscope
(SEM), operating in the secondary electron detection mode. The instrument used was the
Leica S440. This microscope operates on a fully computerised platform, with electronic
controls and digital framestores. It is therefore easy to capture images under very specific

conditions which are in a form suitable for subsequent processing.

The content of this dissertation is by no means restricted to electron microscopy. The methods
developed are equally applicable to any imaging system which conforms to the conditions of
isoplanatism and linearity. The field of light optics invariably falls into this category.

1.1 Overview of relevant autofocus methods

Automatic focusing of imaging systems has always been a desirable and often achievable
goal. The sections which follow give a short overview of autofocus methods that have been
considered and used in the past, particularly those that are relevant to the methods that are
developed in this thesis. Some of the methods described come from the field of light optical
imaging systems, and some from electron microscopy. There is by no means a conflict here;
it is shown in a later chapter that, in terms of the mechanism of image formation, many
of these systems are directly analogous. The discussion is broken into two sections: those
methods which are particular to a specific type or class of instrument, and those which are

more generally applicable.
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1.1.1 System specific methods

There are a number of proposed autofocus methods that are applicable to only a particular
instrument or class of instrument. They are usually based on specific characteristics which
may not be present in every imaging system. Although there are a large number of such
methods, three in particular will be elaborated upon, namely the use of analogue video signals,

the use of inherent system characteristics, and the use of additional subsystems.

Use of video signal

For situations where the images are to be displayed in real-time on a video display, there is
a video signal available. This allows for essentially analogue methods which operate on the
video signal. For example, in the SEM there have been a number of autofocus implementations
based on the derivative of this signal [31]. A typical technique is to maximise the peak value

of the derivative.

Such gradient methods however suffer from a severe disadvantage in that they are sensitive
to noise. Hence methods based on the power spectral density have been introduced. These
usually aim to maximise the power in a given frequency band. This is done by band-pass
filtering the video signal and then measuring the resulting power. By scanning the object to be
imaged in several directions it is possible to extend such approaches to astigmatism correction
as well. Computationally this procedure is intensive, and has not really been feasible until

recently.

Use of system-specific characteristics

Another approach involves utilising specific characteristics of an imaging system to extract
relevant defocus information. In the transmission electron microscope, for example, it is
possible to obtain such information by tilting the electron beam and measuring the resulting
displacement of the image [16]. Also, in the SEM a method has been proposed where the
focal length is continuously changed while scanning an object. The resulting image is then

analysed for particular features which identify the optimal focal length [17].

Use of additional subsystems

Perhaps the most widely-used autofocus technique involves finding the distance to the object
to be imaged by means of a dedicated subsystem. These range-finder approaches are typically
based on the principles of stereoscopy or radar. The majority of hand-held cameras employ

such subsystems.



Chapter 1: Introduction

1.1.2 Generally applicable methods

A second class of autofocus methods involves the use of techniques that can be applied to
imaging systems in general. This is not to say that an implementation on one system can
be applied unmodified to another, merely that the principles used are usually universally
applicable. There are two major categories. The first uses a predefined focal measure and
searches some image-dependent parameter space for the condition of best focus. The second
uses knowledge of the image formation process to infer the degree of defocus from some given

images.

Use of focus measures

A common approach to autofocus is that of defining a focus measure that exhibits a maximum
when the image is in best focus [7, 26, 10, 30, 2]. A search is then made through the range of
possible focal lengths, and when the optimal position is found the focus is set to that. Since
these methods usually require very little knowledge of the specific imaging system they are

often termed passive.

In developing such an algorithm the emphasis shifts to optimising the focus measure. In

particular, positive features of a good focus measure are that

e It exhibits a sharp and well-defined peak at the position of best focus.
e It decreases (preferably monotonically) as the defocus increases.

o It is resistant to noise in the images.

The preference that the measure decrease monotonically would allow for easy implementation
of an intelligent search procedure to find the best focus. In practice this is usually impossible to
achieve. The image often has high energy frequency content in sidelobes around a main central
lobe, which has the effect of both shifting the peak of the focus measure and introducing local

maxima [30].
Some examples of focus measures that have been considered in the literature are the
e Variance of pixel values

e Energy of image gradient

e Self-entropy of the phase of the Fourier transform

As can be seen from these examples, the focus measure can be as simple or complex as desired,

and the choice becomes a very important design parameter.
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A severe disadvantage with this scenario is that the search tends to be blind. The criterion
function may give no indication as to how far from the position of best focus an image was
taken, nor in which direction the focal length should be adjusted to reduce the defocus. This
restricts the search to being essentially linear, which is inefficient. Although there are meth-
ods of reducing the search space, this factor does represent a fundamental limitation. This

weakness is however often tolerated for the convenience of an extremely general algorithm.

Use of system characteristics

With high-speed processing being easily available, methods which analyse captured images
and relate them back to characteristics of the specific image formation process are becoming
attainable. Here, knowledge about the precise way in which an imaging system affects the
captured images is used to obtain defocus information, and focus can then be corrected
accordingly. Such methods are often called active, because they require detailed knowledge

of the system and thus usually need calibration before they operate accurately.

There is substantial overlap between using these methods for autofocus, and work that is
done on the subject of inferring depth from the defocus information in an image. It should
be apparent that if defocus in an image can be used to measure the distance to an object,
then it can just as easily be used to correct the focal length accordingly. There are a number
of papers on the subject of recovery of depth information by means of depth-from-defocus
techniques [23, 29, 6, 36].

The way in which these methods work is to process one or more images which were captured
under different imaging conditions. The internal focal disparity between these images, or the
difference between one of the images and some known reference, is then used to determine
something about the current state of the imaging system in relation to these images. This
information is then used to find the distance of the imaged object from the focal plane. For
example, Pentland [23] proposed a method whereby two images are taken of a scene, one with
a pinhole camera (and therefore in focus), and one with a defocused camera. The resulting
images were then used to find the point-spread function of the second camera, and a model
used to relate this PSF to the distance of the object in the images from the cameras. This
illustrates a usual requirement for these methods: a means is required for translating the
characteristic data into the required variable, usually the camera-to-object distance. There

are two approaches to this translation: the use of models, and the use of lookup tables.

Models: For optical imaging systems, the characteristic feature which is most often used is
the system point-spread function (PSF). The usual approach is to use the thin lens approxi-

mation and the aperture function to derive a relation between the width of the PSF and the
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distance from focus [23, 6, 36]. It is also often assumed that for the polychromatic case in
the presence of aberrations this PSF takes on a roughly Gaussian shape, and the relation is
derived for this situation [23, 36, 18]. By the use of these models the width of the PSF can
be related back to the distance of the object from the focal plane.

Lookup tables: For any imaging system more complex than a simple camera it may be
impossible to develop a sufficiently accurate model. It then becomes necessary to isolate some
feature of the characteristic data, and to tabulate the variation of this feature with changing
levels of defocus. Later, when the algorithm is in operation, this table is used to perform the
required translation. It must be noted that the dimensionality of this table depends on the
number of changeable parameters that will have an effect on the resulting images. Data must
therefore be stored for every possible imaging configuration. This lookup table approach has

also been noted in the literature [6].

Advantages of applying such methods to autofocus is that the entire search process that was
inherent in the passive methods is bypassed. The cost of this, however, is calibration of
the instrument before the translation between the image characteristic data and the desired

distance can be made.

1.2 Requirements for SEM

In developing an autofocus algorithm for the SEM, a number of specific details must be taken
into account. Most importantly, the microscope has an extremely large number of operating
parameters that can be varied when images are formed. Accelerating voltage, probe current,
magnification, focal length and stigmator coil current are but a few of the settings which
must be decided upon before capture can begin, all of which have a considerable effect on the
resulting images. It is for this reason that the passive methods that were described earlier
have been the dominant paradigm in electron microscope autofocus thus far. The model-
based approach seems not to have been investigated, and the parameter space is simply so

large that storage of lookup-tables is unfeasible.

Of secondary importance is the fact that formation of a complete image in the SEM takes a
few seconds if it is to be fairly noise-free. This places a restriction on the number of images
that need to be captured in total for a single autofocusing operation if the system is to remain
interactive. It is fortunate that, because the SEM captures images by scanning, there is always
the possibility of sampling only portions or even lines of any given specimen. If the focusing
algorithm can utilise this feature to reduce the time needed for image capture, then all the
better.
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Finally, as with all algorithms, it is advantageous that it be universally applicable. This means
that the assumptions made and the methods employed must be valid and effective across all
makes and models of SEM, and if possible extending also beyond the field of microscopy.
Included in this requirement is a preference for a minimum degree of calibration, which would

necessarily reduce the accuracy of the algorithm through time.

1.3 Overview of proposed method

In light of the final requirement of the previous section, the system-specific methods that
were discussed are not suited to this investigation. The loss of generality that they repre-
sent outweighs any advantages that they might offer. Also, the general search methods for
autofocus that were outlined have been applied to the SEM in the past, and although they
work effectively the linear nature of the search is debilitating in terms of speed. In the words
of Pentland [23], “The search is unnecessary, for there is a smooth gradient of focus as a
function of depth”. Furthermore, the search for best focus is usually impeded by the presence
of astigmatism, and special care must be taken to ensure that the algorithm converges to the

desired solution [7].

Thus, for the purposes of this thesis, the model-based approach in conjunction with the use
of system characteristics is explored. As has been mentioned, this avenue does not seem to

have been adequately investigated, and it demonstrates many strengths.

The basic assumptions and characterisations are the same as those made in the depth from
defocus work: the system will be characterised by its point-spread function, or equivalently
through the Fourier transform by the modulation transfer function. This is a very natural
starting point in lieu of the vast knowledge base constructed around these concepts in the

literature.

In all cases in the development of this work every effort has been made to keep the proposed
methods as general as possible. Where a widely-made assumption would lead to a neat closed-
form solution, this assumption is analysed and generalised to the point where it represents
a minimal restriction. It is felt that this should be a primary driving factor in any research

work.

An outline of the overall principle that is used will follow. This is meant only as an introduc-

tion, and in the chapters ahead the notions are formally and completely presented.
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1.3.1 Starting points

Many classes of imaging systems can be very accurately characterised by means of the notion
of a point-spread function. Effectively this is a function which represents the image which
results when an infinitesimal spot is imaged by the system. For any real system this function
will never be a spot, but will be spread out in some characteristic manner. The shape of the

PSF is a good indicator of the configuration of the system at any time.

Equivalent to the PSF is the system modulation transfer function. This is just the modulus
of the Fourier transform of the PSF. The MTF is also an indicator of the configuration of the

system, but in terms of spatial frequency rather than spatial coordinates.

The starting point for the proposed method involves the use of two images, Fourier trans-
forming them, and forming the ratio. It is shown in this thesis that if this is done properly,
the result approximates the ratio of the MTFs corresponding to the two images. Since each
of these MTFs is an indicator of the imaging configuration at the times of capture, it may

also be expected to contain data pertaining to the level of defocus in each of the images.

1.3.2 Development

It is in what occurs after these ratios are formed that this work deviates from the usual
depth-from-defocus approaches. In most cases the width of the resulting ratio signal is found,
and related directly back to the distance of the images from best focus. Alternatively, in the
more general case the ratio signal is compared with a table of stored signals, each of which

corresponds to a different out-of-focus distance for a given set of imaging conditions.

The approach followed differs from these two scenarios. Instead, a small number of assump-
tions are made which represent what is felt to be the absolute minimum that ensures a
solution. These assumptions stem from experimental data obtained from the SEM, all of
which are presented in this text. It is likely that most imaging systems will conform to them.
The key attributes of these assumptions are that they allow for an essentially parameter in-
dependent model of the imaging system to be developed. This model can then be used to

make predictions about the distance of the images from best focus.

1.4 Outline of thesis

In order to analyse the effects of defocus on images, it is necessary to have a sequence of
test images with progressively differing degrees of defocus. Such a test sequence has been

captured using the S440 and a silver grid for a specimen. This sequence will be referred to
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as farfocus, and the details appear in Appendix A.
A chapter by chapter overview of the thesis follows.

The second chapter describes the process of image formation in the scanning electron micro-
scope, particularly in terms of the detection of secondary electrons. It justifies the linearity
of the system, and goes on to explain how it can be characterised by a point-spread function.
The outline of formation of the MTF ratio is then described.

The chapter which follows deals with noise. The noise that is present in the test images after
they have been transformed is analysed and categorised. A theoretical discussion of ways in
which this noise can be reduced and the difficulties associated with the procedures is then
presented. Particular regard is given to the final quantity that is required, namely the ratio
of the two corresponding MTFs. It is shown that under some conditions the usual noise
reduction techniques by averaging can fail outright. Alternative methods for dealing with

these cases are then considered and justified.

The findings of that chapter are then used to demonstrate effective ways of forming the desired
ratio. An equation modelling the noise present in the frequency domain is developed, and
this is used to finalise the division process. The method is then developed for collapsing the
ratio into a single dimension, also while taking the noise into account. A very brief section is

then dedicated to the effects of windowing on the Fourier transform.

Having developed the methods for forming the MTF ratios, it is shown how they can be
used to estimate the corresponding MTF for any given out-of-focus level. This introduces a
whole new topic, namely the characterisation of the imaging system for the changing defocus
levels. It is shown that the electron beam can, to a good approximation, be regarded as
a geometric cone with some very specific properties, and these properties are then used to
develop the rudiments of a general image formation model. It should be noted that this
model is created for, and is largely only applicable to, the problem of image formation in the
presence of defocus. In the course of the discussion a Gaussian counterpart to the general
model is introduced. This Gaussian alternative is developed throughout the dissertation, since

it allows for closed-form solutions which are an aid to the understanding of the processes.

The next chapter utilises this model which has been developed and justified in the autofocus
context. It describes the conditions under which the assumptions made are valid, and goes
on to present the ways in which it can be used to design an autofocus algorithm. Some
theoretical analysis is given to the uniqueness properties of the MTF ratio, and methods
developed which allow useful manipulation of these ratios. A very general autofocus algorithm
is then presented, and the reasons for the experimental failure of this procedure given. The
generality is then slightly compromised, and an algorithm presented which circumvents the

causes of failure in the previous case. The theoretical soundness of this method is analysed,
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and the conditions of applicability demonstrated. Note that the Gaussian parallel continues

into this section.

The final major chapter deals with the specifics of the general development put forward in the
preceding chapter. Distance measures, which had up to now not been defined, are proposed
and applied. Approximate sensitivity functions are derived for the use of these measures in
the autofocus algorithm, and modifications are made which emphasise those factors on which
the success of the algorithm depends. The method has at this stage been completely specified,
and results using the farfocus image series are generated. Finally, it is described how the

speed of the resulting algorithm can be improved.

All that remains is to tie up some of the details that would be required in an implementation.
The effect of magnification in the resulting MTF is discussed, and it is explained how it can
be used to improve the reliability of the method. The extension to astigmatism correction
is outlined. The thesis is then concluded, and recommendations given about how this work

might be extended.
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Chapter 2
Image Formation in the SEM

In the SEM, a beam of electrons is used to form an image of a specimen. The SEM is a
point-source (type 1) scanning microscope, which means that at any time the illuminating
beam is focussed to a small spot on the object. This results in a signal which can be detected.
The spot is then scanned across the specimen and an image built up. Depending on the
configuration and the detectors used, the signal can provide information on a number of

physical characteristics of the specimen, such as topography and atomic composition.

For the purposes of this report, image formation in terms of the detection of secondary
electrons (SEs) with an Everhart-Thornley (E-T) detector is discussed in more detail. For an
account of image formation in terms of other signals, see any of the standard introductory
texts [24, 11].

This chapter first describes the overall configuration of the SEM. The notion of an image field
is defined, which allows the specimen to be regarded as a two-dimensional entity without any
ambiguity. It is shown that if secondary electron imaging is considered, then a point spread
function for the system can be determined. This point-spread function corresponds directly
to the current density distribution of the beam at the position that the image was formed.
The linearity of the detectors is then verified. The chapter closes with a brief outline of the

basic principle that is used in the autofocus method developed in this thesis.

2.1 Detection of Secondary Electrons

A diagram of the layout of the SEM is shown in Figure 2.1.

An electron source emits electrons, usually by either thermionic emission or a strong electric

field. An overall potential bias in the direction of the specimen accelerates these electrons,
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Figure 2.1: Layout of the SEM
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Chapter 2: Image Formation in the SEM

which are made to pass through a two- or three-stage electron lens system. These lenses have
the effect of demagnifying the minimum beam cross section at the gun (the crossover), so
that a very narrow electron probe is formed at the specimen surface. A deflection coil system

in front of the last lens can scan this probe across the specimen.

Where the electron beam impinges on the specimen, atomic interactions occur. The secondary
electrons, which will be discussed here, are generated by inelastic excitation of atoms to such
high energy levels that electrons can overcome the work function and escape. By convention,

SEs are considered to be those electrons with an energy of less than 50eV.

The SEs are usually collected by means of an E-T detector. The detector consists of a
positively biased grid which attracts the low energy secondaries, which are subsequently
accelerated onto a scintillator biased at about +10keV. The light quanta generated are then

recorded by a photomultiplier.

2.2 Linearity of the image formation process

For a single electron with energy E incident at a point on the surface of a specimen, there
exists a probability d?n(E, ¢,(,x, Eg)/dEpdQ of a resulting electron being emitted within
the energy interval (Ep, Ep + dEg) and inside the solid angle element df2, with an exit angle
¢ relative to surface normal and an azimuth x (here ¢ is the tilt angle between surface normal
and the incident electron) [24, p.128]. Thus every point where an electron enters the specimen

will have an associated electron emission probability distribution.

Now, for a three-dimensional specimen being viewed from a particular direction (say along
the z-axis) by electrons as shown in Figure 2.2, it is possible in a fairly natural way to define
a corresponding two-dimensional image field as follows: Consider an incident electron with
trajectory parallel to the z-axis and passing through the point (z,y,0). When this electron
strikes the specimen, atomic interactions occur which contribute to the resulting signal. The
two-dimensional image field will shortly be defined in terms of this response for any electron
incident at position (z,y). Note however that such an approach eliminates the need to
consider details of the effect of the z-value of the surface not being a single-valued function
of the position (z,y).

Since all incoming electrons are assumed to come from the same direction, the angle between
the surface normal and the incident electron is fixed for any entry point. The dependence
on ¢ can then be absorbed into x,y, z. Also, if all incoming electrons are considered to have
the same energy, then the dependence on E will fall away. Finally, as discussed above, if the
specimen is regarded as a two-dimensional image field for incident electrons, then the effect of

z is implicit in (z,y). Taking these factors into account and explicitly introducing positional
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Section 2.2: Linearity of the image formation process
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Figure 2.2: Assigning a 2-D image field to a specimen

dependence, the distribution can be rewritten

d2n(‘T’yaCaX,EB)/dEBdQ (21)

The average number of electrons emitted (per incident electron) with energy in the secondary

electron range (< 50eV) and with unspecified exit angle will then be

50eV d2n
5(z,y) = /0 [ i Es (2.2)
This quantity d(z,y) thus gives the average number of secondary electrons emitted from the
sample as a result of a single incident electron along a trajectory parallel to the z-axis and
passing through (z,y,0). We define d(z,y) to be the image field for such incident electrons of
a particular energy E. Thus, for any particular region of the specimen, the number of emitted
electrons is proportional to the incident electrons and the proportionality constant is §. The

image formation process is therefore seen to have a linear basis.
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Chapter 2: Image Formation in the SEM

2.3 Detailed model of image formation

It was shown previously that the physics of image formation could be described by ngg =
d(z,y)np, where ngg is the number of secondary electrons liberated due to np incident

electrons at position (z,y) of the image field.

If dependence on time is introduced, then this becomes
ise = 0(z,y)in (2.3)

with igg the current resulting from an incident beam current ig at (z,y).

If an infinitesimal area element dz'dy’ centred on (z/,y') is considered, it can be said that the

SE current emitted from this area is
disg = 6(z',y')Jo (2, )dz' dy (2.4)

where J,(z',y') is the incident current density at the point (z/,7'). The total SE current
emitted from the specimen is then

o0 o
iMZ/ /5wymmwwww (2.5)
—00 J—00

If the system is assumed isoplanatic, then the current density distribution of the beam can
be written
Jo(wla yl) = J('TI - :anl - y) (26)

where (z,y) is the centre of the incident beam current distribution. Note that the condition
of isoplanatism requires that the aberration of the system be constant to a small fraction of
a wavelength for all points in a region of the geometrical image that is large compared with

the extent of the diffraction image of a point source formed by the system [14].

Now, for every point (z,y) of the centre of the beam, the total resulting secondary electron

current is

iss@y) = [ [ 6@ )T~ wy - y)ddy 27
—0Q J =00
which is just the convolution product

iSE'(w’ y) = 5($a y) &® J(—.’E, _y) (28)

where ® represents the convolution operator. Thus it can be seen that, under the conditions
described here, it is possible to define a point-spread function h'(z,y) = J(—z, —y) which has

the property of the total secondary electron yield being a linear convolution of the image field
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Section 2.4: Linearity of the detector

with this PSF.

2.4 Linearity of the detector

The discussion which follows is based on Reimer [24, p.178].

For every electron that is emitted from the specimen, there is a probability p. of it being
collected by the detector. Once collected, there is a probability pys of it being backscattered.
On average, if the electron is not backscattered, it will cause n.p;, electron-hole pairs in the
scintillator, of which a fraction gg. will be converted into light quanta. Therefore, on average
the number of light quanta occurring in the detector per electron emitted from the specimen
will be pe(1 — pps)nenpgse. If the gain of the system is given by Gp (say volts per light quanta

per second), then the output signal from the microscope will be

f(z,y) = ise(z,y)psc(l — Pbs)NenpdscGp (2.9)

with f(z,y) the resulting signal for the beam centred on (x,y). Thus the signal can be seen
to be a linear function of the number of SEs emitted from the specimen. Letting G jyerqnr =

Pe(1 — Pos)NenpdscGp, we can then use Equation 2.8 to write

f(:v,y) = Govemll (5(567?/) ® hl($a y) (2-10)

so with h(z,y) = Goverali hl(ma Y),

fz,y) = 6(z,y) ® h(z,y) (2.11)

It has thus been shown that, under the conditions described here, image formation in the

SEM can be considered to be a linear convolution of two quantities:

e A specimen dependent component, namely a two-dimensional field of secondary electron

yield coefficients

e A system dependent point-spread function which, in conjunction with the image field
defined here, is effectively the scaled and reflected current density distribution of the

electron beam.

This result is an extremely important one because it characterises the linearity of the image

formation process in terms of observables.
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Chapter 2: Image Formation in the SEM

2.5 Autofocus approach

The outline of the general approach to be taken in developing an autofocus system will now

be discussed.

In the previous section it was shown that within certain approximations the SEM image
formation process is linear, and that an image f(z,y) can be modelled by a convolution of an

image field é(z,y) with a point-spread function h(z,y) (equation 2.11).

In the Fourier transform domain this can be represented by a simple point-by-point multipli-
cation
F(wwawy) = A(wwawy)H(wwawy) (2.12)

where the upper case functions are the Fourier transforms of the respective lower case func-
tions. w, and wy are the spatial frequency coordinates in the Fourier transform domain. If two
images are now taken of exactly the same area of the specimen, but using different imaging

conditions, then

Fi(wg,wy) = Awg, wy) Hi (wg, wy)
Fy(wg,wy) = A(wg, wy) Ha(wg, wy) (2.13)

where the difference between H; and Hy comes about because of this change in settings. For
purposes of this thesis this change is considered to come about due to a change in focal length,
although in general other factors such as changes in aperture can also be utilised [6]. The
corresponding spatial domain PSFs h; and he can be said to relate to the current density
distribution of the beam at those positions where it intercepted the specimen. The ratio

Fl/FQ is now
Fl(wwawy) _ Hl(wmawy)
FQ(wwawy) HQ(wzawy)

(2.14)

which is an image independent quantity that varies according to the two PSFs used in the
formation of the images. Note that the quantity |H(ws,wy)| is just the MTF corresponding
to the point spread function h(z,y).

On an image capture level, F; and F, will therefore be identical except that the focal length
of the microscope was changed for one of the images. The quantity |F;/F»| can be used to
extract information about the PSFs at the positions along the beam where the images were
formed, and future chapters demonstrate that it is possible to use it to predict where the
minimum beam crossover occurs with respect to the specimen position. The focus can then

be corrected to have this crossover coincide with the specimen surface.

This thesis concentrates on the processes of formation and the subsequent extraction of the

required information from the MTF ratio.
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Chapter 3

Noise

The effect of noise in the image formation process is now discussed. Models for the noise in the
frequency domain are given, and methods proposed for reducing this noise in the formation

of the ratio signal.

This chapter begins with a characterisation of the noise that appears in the SEM images. The
noise in both the spatial domain and the frequency domain is considered. It is asserted that
the spatial domain characterisation is inappropriate in this case. The noise in the frequency
domain is then discussed in more detail. Cuts through the Fourier transform of the images
for varying out-of-focus levels are presented. It is shown that the frequency domain signal
can be considered to be contaminated by additive nonzero mean noise. A method is then
developed for finding the histogram of this noise. The noise is independent of the defocus

level of the instrument.

Methods of reducing the Fourier domain noise are then discussed. Some methods are described
for using simple averaging to achieve this. It is shown that the magnitude in the frequency
domain is the better representation to use in this case, because of the property of invariance
to spatial shifts. The degrading effect that the electron beam has on the specimen is then
introduced. More complex noise reduction techniques are then proposed which circumvent

this problem.

The section which follows that considers the effect of forming the ratio of MTFs on the noise
in the images. The noise model that was described is used in this discussion. It is justified
that after averaging a Gaussian noise distribution can be assumed. An in-depth discussion is
presented on the noise that occurs in the ratio, and a closed-form solution for the probability
density of this noise derived. Methods are then developed for estimating the true value of
any point in the ratio. The use of the mean as an estimator is first discussed, and it is shown

that it is inappropriate. The use of the median and mode as estimators is then considered,

19



Section 3.1: Manifestation of noise in images

and it is demonstrated that the former allows for a more accurate value to be obtained.

These findings are then used to develop an appropriate noise reduction method. Estimation
of the parameters of the noise model is presented, and justification is given for the noise
reduction technique that was briefly introduced earlier in the chapter. It is confirmed that
this technique is a valid operation, and that it does indeed result in a reduction in the noise.
The chapter concludes with a discussion of how the radial redundancy in the MTF can be

used to effect yet more reduction.

3.1 Manifestation of noise in images

For our purposes we are interested in the way in which noise affects the images, rather than
in the details of the processes which cause this noise. The appearance of this noise in the

spatial and frequency domain is therefore presented here.

3.1.1 Noise in the spatial domain

From the spatial domain it is possible to extract information regarding the probability dis-
tribution of the noise, as well as whether it is additive or multiplicative. The simplest way
to garner this information is to look at the image of a uniform, featureless object. The his-
togram of pixel intensities in this image will represent the distribution of the noise to within
a constant offset. Furthermore, if the noise distribution (with respect to, say, the mean) is
unchanged for a similar object but with a different average intensity, then it can be deduced
that the noise is additive. Using such methods an elaborate classification of the noise can be
performed, if it is required. For our purposes however, such a classification is unnecessary.
Since the methods to be used operate on the Fourier transform of the images, the appearance

of the noise in the frequency domain is of more concern.

3.1.2 Noise in the frequency domain

In order to examine the effects of noise in the frequency domain it is necessary to apply the
Fourier transform to the image. This discussion is best continued by means of direct use of

examples of images acquired from the SEM.

Images from the through-focus series farfocus will be used in this analysis. As has been

mentioned, all the details of the test sequences appear in appendix A.

For each image the centre 256 x 256 pixels were extracted. The Fourier transform was then

applied, and the modulus taken. No special use was made of windowing to reduce artifacts in
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Chapter 3: Noise

the transform domain, so in effect a rectangular window was in use (the use of windowing will
be discussed in section 4.1). Radial cuts were then taken of the data from the centre on a line
out to the edge, resulting in a one-dimensional signal which can easily be analysed. Finally,
to reduce the high frequency fluctuations in the signals they were smoothed using a 9-point

moving average filter. Two such cuts are shown in Figure 3.1 for images far4 and far7. The
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Figure 3.1: Logarithmic plots of radial cuts through magnitude of Fourier transforms of
images far4 and far7.

transformed data is roughly radially symmetric, so these profiles are representative of cuts

taken at all angles from the centre of the image.

It can be seen that there is a main lobe of high intensity in the centre, which falls off to a
constant value on the periphery. This lobe is wider for far4 than for far7, reflecting that
the former was taken closer to focus than the latter, and that less high frequency content has
been lost in the conversion from object to image space. Most noteworthy however is the fact
that beyond the range of the main lobe the transform falls to a constant, the value of which
does not change with the degree of defocus. This suggests that the entire transformed image
is riding on a white noise background, the magnitude of which remains constant for all focal

lengths.

A further significant observation is that there is some fluctuation of the signal in this flat
region, and by implication this extends into the main lobe which contains the significant
information. In order to determine the character of these fluctuations, a histogram was

plotted of the pixel values far from the centre where the effect of the main lobe is negligible.
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Section 3.1: Manifestation of noise in images

The centre 256 x 256 pixels of image far9 were extracted, and the transform and modulus
taken. The four 64 x 64 blocks in the corners of this image were then used to extract the

histogram information, and the result is given in Figure 3.2.
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Figure 3.2: Histogram of pixel values on the periphery of magnitude of Fourier transform
(image far9)

The distribution appears positively skewed. This is expected because of the operation of

taking the magnitude, which precludes the possibility of negative pixel values.

Table 3.1 shows statistics based on each image in the farfocus image sequence. The same
procedure was followed as for the previous case of calculating the histogram, except that
the four blocks extracted from the corners had dimensions of only 8 x 8 pixels. The images
further down in the table correspond to greater degrees of defocus. It can be seen that once
the distance from focus is far enough so that the main lobe does not affect the outer pixels, the
mean and standard deviation of these pixels do not vary significantly with defocus. One would
not, however, expect this to be the case if some more fundamental instrument parameter (such

as probe current or operating voltage) were changed.

It is this fluctuation of the signal in the frequency domain which is unwanted and needs to be
effectively handled. Henceforth, when noise in the images is mentioned, it is this frequency

domain fluctuation rather than the spatial domain contamination which is being referred to.
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Chapter 3: Noise

Image Name | Mean | Standard | Image Name | Mean | Standard

deviation deviation
farl 6690.81 | 3732.01 far10 6016.54 | 3137.98
far2 4438.34 | 2470.30 farll 3639.31 | 1906.41
far3 3721.79 | 1979.48 far12 3727.93 | 1909.55
far4 3712.16 | 1945.06 far13 3672.52 | 1963.96
fars 3729.85 | 1955.25 far14 3724.17 | 1944.57
far6 3653.18 | 1854.78 far1l5s 3684.85 | 1919.39
far7 3666.91 | 1957.87 far16 3872.38 | 2044.13
far8 3647.25 | 1915.06 farl7 3781.28 | 2043.17
far9 3744.43 | 1869.51 far18 3747.84 | 1970.13

Table 3.1: Statistics derived from periphery pixels of magnitude transforms of images farl
to far9 (magnification 500x) and far10 to farl8 (magnification 1000x)

3.2 Frequency domain noise reduction by averaging

The autofocus algorithm operates on the ratio of two MTFs which exist in the frequency
domain. Any noise in the ratio will naturally have a degrading effect on the procedure, and
it is therefore beneficial to minimise the magnitude of this contamination. There appear to
be two stages at which the noise can be reduced: the first is in the Fourier transform of the
images to be used informing the ratio, and the second is to reduce the noise in the ratio

estimate itself. Each of these stages will be elaborated on in turn.

3.2.1 Reduction of noise before formation of ratio

The first stage at which the noise can be reduced is in the Fourier transforms of the images
themselves, before the ratio is formed. This should result in a reduction in the noise in the
ratio because the component signals are less contaminated. A simple and generally effective
way to do this is to employ averaging over a number of transformed images. There are two
possibilities that will be discussed here: the case where the area of the specimen remains

constant through the averaging, and that where it is allowed to change.

In order to do this a set of statistically independent samples of the transform of the area of
the specimen are required. This introduces some possible scenarios depending on the way in

which the image capture stage is implemented.
e A number of images can be captured through time of the same area of the specimen. For

this case, the image content remains identical, but the noise in each image is different.

Assuming the noise to be Gaussian, forming the average (on a pixel by pixel basis) of
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Section 3.2: Frequency domain noise reduction by averaging

the magnitude of the Fourier transform of these images will result in a /n improvement
in the signal to noise ratio in the transform domain, where n is the number of images

averaged.

e Since ultimately the signal that will be used is one-dimensional, a further option would
be to simply scan the specimen along a line a number of times. The noise contributions
will then be time-separated and therefore independent, and averaging n signals will

again reduce the standard deviation of the noise by a factor of \/n.

In both cases a reduction in the magnitude of the fluctuations in the frequency domain will
occur. What comes out will be a noise-reduced estimate of the Fourier transform of the area

of the specimen that was transformed.

It is apparent that the averaging could in fact be performed in the spatial domain before the
transform is taken. Although this would be simpler, it is undesirable to require it for the
following reason: there usually occurs some lateral image drifting in the SEM. This means
that images captured progressively through time may in fact not be of exactly the same area
of the specimen, and will therefore not be registered exactly. Averaging in such cases will
cause a blurring of the signal detail. It can, however, be shown that the magnitude frequency
domain is invariant to translations in the spatial domain. A shift in space simply causes
a phase change in the Fourier transform, which is eliminated by the process of taking the

modulus. This is demonstrated by the form of the Fourier transform pair
f(x—a,y —b) <= F(wg,w,)e “=te b (3.1)

with F'(wg,wy) the transform of f(z,y). The exponential factors introduced by the image shift
are removed when the modulus operation is applied. Because of this translation invariance,
only the removal of the effects of noise in the frequency (rather than the spatial domain) will

be considered.

There is, however, another problem particular to the SEM which encourages a deviation
even from the methods suggested here: the electron beam can have a degrading effect on
the specimen. Imaging the same area for a long period to reduce noise can therefore cause
permanent damage to the specimen. Furthermore, charge build-up in the specimen will change
its imaging characteristics; if an area of the specimen is not permitted sufficient time between
electron exposures to allow charge to dissipate, the interaction between the beam electrons
and the object will be affected. This will cause the appearance of the specimen to change
(non-destructively) through time. The combined effect of these factors is that in general it is
not favourable (or even possible) to use the same part of the specimen repeatedly for purposes

of noise reduction.
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3.2.2 Reduction of noise during or after formation of ratio

Since the system is characterised by a PSF which is invariant with respect to the images
formed, there is no reason to use the same area of the specimen repeatedly. Any image
formed on the SEM will exhibit the same MTF, as long as the imaging parameters are not

changed. This presents two additional scenarios which will be analysed.

The first is to capture many image pairs, each taken at the same focal lengths, and to form
the MTF ratio for each case. Since each image pair corresponds to the same area of the
specimen, they are all estimates of this ratio. The piece of specimen imaged need not be the
same from one pair to the next. The natural thing to do would then be to form the average of
these estimates, effecting noise reduction in this manner. It will however be shown that this
operation is invalid, and under a few general assumptions will result in no noise reduction at
all.

The second scenario, which appears to offer an optimal solution, lies somewhere between this
method and the method of averaging the numerator and denominator transforms that was
presented in the previous section. Here, image pairs are captured as described before, each
having possibly different content. The average of all the numerator transforms is then formed,
and divided by the average of the denominator transforms. Although each of the numerator
and denominator averages contain a combination of information relating to different specimen
areas, it turns out that the ratio is a noise reduced estimate of the required quantity. This is

discussed in detail in section 3.4.1.

Before the justification for statements made in this section can be given, a detailed discussion

of the effects of noise in the division process must be provided.

3.3 Effect of division on noise

Having introduced the subject of noise that occurs in the Fourier transforms of images in
the SEM, the effect on the noise of dividing one of these transforms by another has to be
considered. This is important in the formation of the ratio of MTFs discussed in section 2.5.

In the previous sections it has been shown that, in the transform domain, the images formed
have some very definite characteristics. There is a central lobe of low frequency data, which
carries the information that was preserved in the conversion from object to image (and then to
Fourier) space. Outside this lobe the signal falls to a roughly constant value which indicates
the presence of a uniform white noise background in the images. Also, contaminating the

entire signal is a random fluctuation, the distribution of which is given in Figure 3.2.

To avoid having to deal with two separate cases, only the more general case of the probability
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Section 3.3: Effect of division on noise

distribution of the fluctuations having a Gaussian profile is considered. Even if this is not
exactly correct, the distribution is close enough to Gaussian that some general conclusions
may be drawn. If averaging is performed the assumption becomes even more accurate. This
follows from the property of sums of random variables: if two variables are added the re-
sulting probability distribution is given by the convolution of the probability distributions for
each [22]. In conjunction with the central limit theorem this guarantees that if enough random
variables are added together, then the resulting distribution will tend towards a Gaussian [5].

The probability distribution of the mean will then also be a Gaussian.

3.3.1 Division of two Gaussian random variables

Consider the random variable Z = X/Y", where X and Y are random variables with associated

probability densities px(z) and py (y). The probability distribution of Z is then

p2() = [ lulpxr (v )y (52

where pxy (z,y) is the joint probability density of X and Y, and is equal to

pxv(z,y) = px(z)py (y) (3-3)

for the case where they are statistically independent [22, p.196].

For X, Y normally distributed with means zy and yy and standard deviations o, and oy, the

precise probability distributions are given by

px(s) = e T’ (3.4)
V2mo, )
1 _%(uQ)z

(& 7Y

py(y) = \/2—7%

Substituting equation 3.4 into 3.2 and letting o, = oy = o, the distribution of Z becomes

o0 1 liyz_ =2 1 y
_ SHE R0y _
pale) = [ lolgmge HE I e gy (35)

Normalising the variables by setting p = y/o, zi, = xo/0, and y{ = yo/o, and regrouping

terms, this expression for pz(z) can be written

pr(z) = K [ [plem (b2 b hungy (3.6)
— 00
where
K= e e 3ot (3.7)
27
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From tables of integrals, a solution to this equation can be found (see Appendix D) to be

_og M) [ g [ () L
pa() = 2K {u(z)\/u(z) W( u(2)>+2u(z)} 5

where u(z) and v(z) are

1, 1
p(z) = 2% T3 (3.9)
1 ! 1 !

and ®(z) is the usual error function defined as

B(z) = % /0 T (3.10)

In the following two sections this expression for pz(z) is used to analyse the use of the mean

of this distribution to reduce noise, and then the use of the median and mode.

3.3.2 The mean as an estimator

The expression for pz(z) given in equation 3.8 will be analysed in two stages, firstly for the
special case of zero-mean random variables, and then for the general case where the means

can be nonzero.

Ratio of zero-mean normal random variables

If zo = yo = 0, then v(z) = 0 in equation 3.9 and the probability density for Z reduces to

1 1

pz(2) = — 5 (3.11)

This is a case of the Cauchy probability distribution. It is discussed in some of the texts
on probability because of its fairly singular characteristics [27]. A plot of this distribution is

shown in Figure 3.3.

A characteristic of the Cauchy distribution is that its mean does not exist (although it does
have a principal value of zero). This non-intuitive fact can be simply observed if an attempt
is made to find the mean by usual computational methods. This is demonstrated in Ap-
pendix C.1. Of course the median and mode of the distribution exist and are both equal to
zero. It can also be shown that the standard deviation of a Cauchy-distributed variable is

infinite.
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Figure 3.3: Plot of Cauchy probability distribution

Related, but of more interest to us, is the fact that the variable formed by taking the average
of n variables with Cauchy distributions is itself Cauchy-distributed. In order to show this
a fundamental theorem in statistics needs to be observed which states that, if the random
variables X and Y are independent, then the density of their sum Z = X + Y equals the
convolution of their respective densities. Since convolution corresponds to multiplication in

the Fourier transform domain, the transform pair

1 ™ _
peanp Rl aful (3.12)

is used to show that the Fourier transform of the Cauchy distribution in equation 3.11 is
Fipz(2)} = e (3.13)

Thus if p,, z(z) is the distribution of the sum of n variables with probability distribution pz(z),
then
Fi{pnz(2)} = e ™l (3.14)

Performing the inverse transform the form of the resulting distribution is found to be

1
22 +n?
1/n?

= Ki(z/n)Q 1 (3.15)

Pnz (z) =
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where K is chosen to normalise the distribution. Since this is the distribution for the sum of
the variables, the form for the average, prz(z), is obtained by compressing the distribution
in the z-direction by a factor of n. Thus the distribution of the average after normalisation

becomes
1 1

T2+ 1

prz(z) = (3.16)

which is identical to pz(z).

The previous discussion demonstrates the possibility of an apparently reasonable distribution
having some non-intuitive properties. It is a widely known principle that for normally dis-
tributed noise added to a signal, the signal-to-noise ratio can be improved by a factor of 1/n
by means of averaging over n samples. Here, however, is a case of a distribution which looks

similar to a Gaussian distribution, but where averaging will have no effect whatsoever.

Ratio of nonzero-mean normal random variables

In the preceding section the case of forming the ratio of zero-mean random variables was
discussed. It was observed that the probability distribution of the resulting variable was such
that it had no mean or standard deviation, and that averaging could in this case not improve
the signal-to-noise ratio. In this section it will be demonstrated that a similar situation occurs

for the more general case of nonzero-mean Gaussian variables.

Appendix C.2 provides the proof that even if the restriction of zero-mean is dropped, the
expected value of the ratio of two normally-distributed random variables is still undefined.
The indication is thus that there would continue to be some complications in attempting noise
reduction by means of sample averaging. It is not expected that the corresponding results of
the previous section will carry over entirely unmodified, and that averaging will have no effect
whatsoever on the probability distribution. However, the fact that the mean does not exist
suggests that no theoretical justification exists for assuming that the operation will produce

the desired result.

It is concluded that in this situation it is incorrect to attempt to reduce noise by means of
averaging over a number of samples. The sample mean is not an estimator of the distribution
mean, because this latter quantity does not exist. This is not just a theoretical complication
with no practical relevance; simulation shows that the process of averaging does not result in

a reduction in the spread of values that the variable takes on.

There are other measures of location that can be used to describe the distribution of a random
variable. In the section which follows, the median and mode are discussed as estimators of

the ratio of the noise-free values.
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3.3.3 The median and mode as estimators

The median of a distribution of a random variable X is any number Med(X) having the
property that

Px{X <Med(X)} <> and Px{X >Med(X)} < % (3.17)

N | =

The mode of a random variable is its most probable value (the value for which the probability
distribution is a maximum). The use of these two location measures will now be discussed in

evaluating the actual value of the MTF ratio in the limit as noise becomes insignificant.

Plots of the probability distribution for Z = X/Y are shown in Figure 3.4 for two cases
of zo/yo = % and zo/yo = 2. In each plot the distributions are given for three values of
noise. It is noted that in all cases the distributions are positively skewed and unimodal. Also,
as the magnitude of the noise becomes lower the location of the peak of the distribution
becomes a better estimate of the value zy/yo. Furthermore, it appears to be the case that

this observation is more accurate for the case of zy/yp < 1.

In order to verify this statement and to assess the limits within which the mode is accurate
as an estimate of zy/yo, a plot of the mode versus ratio is shown for changing noise. This
appears in Figure 3.5. It can be seen that the mode is consistently less than the actual ratio,

but as the noise decreases it becomes a better estimate.

Since the distributions are positively skewed, it is expected that the median of the distribution
will be greater than the mode. Thus it is expected that the median will be a better estimate
of the ratio than the mode, which consistently under-predicted. A plot corresponding to the

previous one but for the case of the median is given in Figure 3.6.

It is evident that for low values of noise and for zy/yo < 1, the median is an effective estimate
of the required ratio. It is therefore concluded that when the ratio Z = X/Y of two Gaussian
random variables with means xy and g is formed, the median of the resulting distribution is

a good estimate of the ratio zy/yo under conditions of low noise and zo/yo small.

3.4 Methods of reducing noise

With the theoretical foundation now established, the discussion of noise reduction in the
frequency domain can be continued. The method of reducing noise in the formation of the
ratio is now clarified, and the subsequent collapsing of the signal into a single dimension is

discussed.

In section 3.1.2 the noise that occurs in the frequency domain was presented. It was shown

that once the images are Fourier transformed, what remains is a constant-level background
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(b) pz(2) for zo/yo = 2

Figure 3.4: Probability distribution of Z for two values of z(/yo and changing noise
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Figure 3.5: Mode vs. z(/yo ratio for changing noise
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Figure 3.6: Median vs. z/yg ratio for changing noise

32



Chapter 3: Noise

superimposed on the actual signal. Furthermore, this entire resulting signal is contaminated

by random noise. The representation in the frequency domain can be modelled by the equation
|Fimage(wzawy)| = |F(wzawy)| + n(wx,wy) +C (3'18)

with |Fimage(we, wy)| the modulus of the transform of the image f(z,y), |F(wz,wy)| the desired
modulus of the transform without contamination, n(ws, wy) a zero-mean random noise variable
and C the overall offset. In order to successfully utilise the signal, |F'(w;,wy)| needs to be
approximated from |Fjpqge(wy,wy)| by minimising the effect of the two undesirable factors C

and n(wg, wy).

The first factor can be eliminated fairly simply: as long as the value C is known, it can just
be subtracted out from the signal. In practice this value can be found by considering the
transform of an image which is known to have a large degree of defocus. In this case the
signal |F(wg,wy)| is approximately zero everywhere, except at very low frequencies. Hence
for large wy, wy,

| Fimage (W, wy)| = n(wz, wy) +C (3.19)

Since n(wg,wy) is zero-mean, the average over a large number of such pixels will be an

approximation to the value C.

A simple approach to reducing the effect of noise n(wy,wy) would be to run a smoothing
kernel over the entire image |Fimqage(ws,wy)|.- The problem with this is that it might change
the signal in such a manner that it is no longer a good approximation to |F(wg,wy)|. The

better solution was introduced in section 3.2.2 and is here discussed in detail.

3.4.1 Reducing noise in formation of ratio

Assuming the imaging system to be isoplanatic and linear, the image formation process can
essentially be viewed as a convolution of a point-spread function by an image field. This
point-spread function is independent of the position in the image, and depends only on the
configuration of the imaging system. This makes it possible to use a number of image pairs

with differing content but which have been formed with the same PSF.

There are a number of ways in which these pairs can be obtained. They could be completely
independent samples, simply captured at the same focal lengths. Alternatively, they could
be obtained from tessellating a numerator and a denominator image into subimages, and
regarding each subimage as a separate sample. Whatever the means, it will be assumed for
this discussion that there are p image pairs available. The transforms of these images will be

designated Ny (imqge) (Wz, wy) and Dy (imqge) (Wz, wy) for the numerator and denominator images
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respectively (where k =1,2,...,p). From equation 3.18,
|Nk(image) (wz, wy)| = | N (we, wy)| + ng (wg, wy) + C (3.20)
Defining Ny (wg,wy) t0 be | Ni(image) (W, wy)| — C it can be written that
Nllc(‘*)wawy) = |Nk(w$,wy)| +”a(ww>wy) (3.21)

This quantity N (wz,wy) can be calculated directly from the data once the constant C is

known. The desired signal is then given by
|Nk(ww>wy)| = N]ﬁ:(wwawy) _nd(wwawy) (322)

The same procedure can be used on the denominator subimages to find values for the expres-
sion

| Dy (wz, wy)| = D, (wa, wy) — N (wa, wy) (3.23)
The signals | N (wz, wy)| and | Dy (wg, wy)| are now the quantities which are assumed to conform

to the linear convolution models

|Nk(w$awy)| = |Fk(wxawy)Hn(w$,wy)|
|Dk(ww>wy)| = |Fk(wwawy)Hd(w:cawy)| (3.24)

with Hj,(wg,wy) and Hg(wy,wy) the Fourier transforms of the PSFs that were used in the
formation of the numerator and denominator images.

To find a noise-reduced estimate of the MTF ratio |Hy,(wz, wy)/Hg(wg,wy)| a simple method

that might be considered would be to form p independent estimates of the ratio

|Hn(ww>wy)| _ |Nk(ww>wy)|
= (3.25)
|Ha(we,wy)| /| Di(wz, wy)
and then to calculate the average. This would result in the expression
IHd(ww,wy | [t IDk wz,wy)l

However, considering the discussion in section 3.3.2 it is apparent that the noise in each
estimate of |Hy, (wg, wy)/Hg(wg,wy)| has the approximate probability density given in equa-
tion 3.8, and the mean of these estimates is undefined. A valid way of estimating the ratio

will now be considered.

34



Chapter 3: Noise

Taking the modulus and forming the average over all subimages, equations 3.24 become

p p
1
Do INk(wnywy)l = = |Hu(wewy)| D | Fi(ws,wy)]
k=1 p k=1
p 1 p
Z |Dk(wwawy)‘ = _|Hd(wwawy)| 2 |Fk(wwawy)|
k=1 p k=1

(3.27)

The MTFs |Hy, (wg, wy)| and | Hg(wy,wy)| have here been taken out of the summation because

they are assumed independent of the subimage. The MTF ratio can then be written

|Hn(wxawy)| _ Zi:l |Nk(ww>wy)|
‘Dk(wmwy” 2221 |Dk(wmawy)‘

(3.28)

This demonstrates how the MTF ratio can be estimated by forming the average of all the
numerator and denominator modulus transforms before performing the division, even in the

case where the image content for the subimages is not the same.

The reason why >-2_; | Ng(wg,wy)|/ >h_ |Di(wsz,wy)| is a better estimate of the MTF ratio
than |Ni(wg, wy)|/|Dk(wg,wy)| is the same as for the case of averaging across similar images
to reduce noise. The noise contributions are statistically independent in each case, so the
average of the images has less noise than each independent image. This holds, despite the
fact that the signal content is not in each case equivalent. When the ratio is formed the
most probable value for any pixel is the mode of the corresponding distribution. Since after
averaging there is less noise in the quantities forming the ratio, this mode becomes a better

estimate of the actual pixel value. This fact is clearly demonstrated in Figure 3.5.

The use of this technique in the extraction of MTFs has been noted by Lim [19, p.559]
without justification. This discussion however shows incontrovertibly the reasons why it is an

improvement on the ratio estimated without the averaging.

3.4.2 Reducing noise after formation of ratio

The point-spread function of a monochromatic imaging system is circularly symmetric in the
absence of coma, astigmatism and distortion. This can be deduced from the discussion in

Appendix E: For this case the modified aperture function is
VYmoale,n) = M1 A(e, ) (3.29)

which can be seen to be circularly symmetric in the (¢,7n)-plane. Since circular symmetry is

preserved by the Fourier transform, and the PSF of the system is dependent on the scaled
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Fourier transform of 1),,,q4, the PSF will be symmetric about the origin. This will also be
the case for the MTF, which is also related to the PSF only through the Fourier transform.

Hence the ratio of two such MTFs will have circular symmetry.

In lieu of this symmetry, there is redundancy in the 2-dimensional MTF ratio data. In the
absence of noise, a 1-dimensional signal formed by considering the ratio along a line from
the centre outwards will fully specify the MTF ratio. For the case of noise, the additional
information present can be used to improve the estimate of this signal. Another advantage

with using the 1-D representation is that it is easier and faster to manipulate.

If astigmatism is introduced, this symmetry ceases to exist. However, since the point-spread
function of an astigmatic beam is a physical observable (and is often assumed to be a roughly
elliptical Gaussian [7]), discontinuities would not be expected in the distribution. Addition-
ally, since the PSF is band-limited in space, the MTF can also have no discontinuities. When
the ratio of MTFs is considered, the same can be said for all points in the ratio where the
denominator MTF is nonzero. This stems from a theorem in real analysis which states that

if two functions f and g are continuous, then the ratio f/g is continuous for all points where
g # 09, p.252].

If an outward radial line from the centre of the MTF ratio is considered, the profile of the
data along this line would thus not be expected to change dramatically as the angle of the line
is slowly varied. Thus the MTF ratio can be assumed approximately circularly symmetric as
long as only the data within a small angle of the required line is used. Figure 3.7 demonstrates
a possible area from which data can be used in making an estimate of the MTF ratio along
the solid line.

Given the radial redundancy it should therefore be possible, in the presence of both spherical
aberration and astigmatism, to use closely-spaced neighbours to a given pixel to reduce noise
in the estimate of its value. These neighbours should be at the same distance from the
centre of the MTF ratio, but at slightly different angles from the line along which the ratio is
required. In this way a noise-reduced profile of the MTF ratio can be formed given the angle

at which this profile is needed.

The complications that arose in the previous section in forming averages of ratio signals also
occur in this case. The independent samples to be used in the averaging process have all been
subject to the division process which invalidates the procedure of taking the mean. For the
reasons discussed in section 3.3.3, the median of the samples should therefore be used to form

the noise-reduced estimate.
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=

Figure 3.7: Area from which data is used in forming an estimate of the MTF along a line
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The image formation process is now analysed to identify underlying consistency which can
be made use of in an autofocus context. Before continuing with this, however, the effect of

the Fourier transform having to be discrete for calculation purposes is discussed.

The chapter opens with a short discussion of the effects of windowing in the discrete Fourier
transform. This is for completeness only; windowing is not considered in any detail in this
thesis. The fact that results obtained later do not seem affected by windowing is seen as

justification enough for this omission.

A complete procedure for forming the MTF ratios using all the noise reduction techniques is
then presented. Procedures to follow in exception situations (such as division by zero) are
also defined. It is shown how this procedure can be used to find the effective MTF of the

system for any defocus level. Examples of two such MTFs are shown.

The section following that analyses the MTFs obtained for trends in the MTF width with
respect to defocus level. T'wo cases are considered, one using the assumption of a Gaussian
MTF and the other using a template. It is shown that for both of these characterisations
the width of the MTF varies approximately linearly with changing focus level. Furthermore,
it is demonstrated that the MTF profile along the length of the beam is essentially constant

except for a scaling in the overall width. This is referred to as the self-similarity property.

These findings are then used in the construction of an extremely general beam model. This
model uses only the assumptions of linearity of width with respect to defocus, and self-
similarity. The model is additionally extended under the optional restriction of a Gaussian

beam profile.
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Section 4.1: Artifacts from the discrete Fourier transform

4.1 Artifacts from the discrete Fourier transform

So far the discussion has evolved around infinite extent signals which are analytic everywhere.
In order to calculate Fourier transforms, however, these signals have to be truncated and
sampled. The effects of these operations on the process of forming the ratio will briefly be

discussed.

By the nature of the discrete Fourier transform, every finite signal is assumed to be periodic,
replicating itself in prior and subsequent intervals. If the N-point transform is considered,
this replication occurs at N-point intervals. Figure 4.1(a) shows the effective infinite extent
signal that gets transformed when only a finite portion of a signal is considered. It can be
seen that, with regard to the Fourier transform, the simple action of extracting a portion of

the signal in effect multiplies the original by a rectangular window.

The major problem with this scenario is that the resulting signal is no longer continuous.
When this signal is then transformed, frequency components are introduced which might

obscure the desired transform coefficients.

An effective way to minimise this effect is to make use of special windowing when extracting
the finite signal from its infinite extent counterpart. Figure 4.1(b) shows a typical window
that is used for this purpose, and the resulting signal as transformed by the DFT. It can be

seen that the discontinuities inherent in the previous case have been eliminated here.

The action of windowing will always have the effect of altering the signal which is being
transformed, since it is impossible to take the DFT of an infinite extent signal. Different
windows will have varying effects on the transform, and a window must therefore be chosen
which retains the required information for any given purpose. A complete analysis of the

effect of sampled windows for DFTs has been made [13].

In the frequency domain this multiplication by a window can be effected by convolving the
infinite transform with the transform of the window function. This has the effect that if noise

is ignored, the Fourier transform of the windowed signal will be
[F(wzawy)H(wwawy)] ® W(wxawy) (41)

where F' is the image field, H the transfer function, and W the window function in the
frequency domain. In the case of a rectangular window, this function is of the form sin(z)/z.
It is evident that if the ratio of two such windowed and transformed signals is taken, then the

dependence on F' is not entirely eliminated, some of it remaining due to the windowing.

No discussions about specific windows and their effects will be given in this thesis. In all

cases the implied rectangular window will be used. The justification for this decision will be
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Figure 4.1: Effect of finite extent processing of infinite extent signals
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confirmed in subsequent chapters, where it will be seen that the results do not appear to be

compromised by the window used.

4.2 Procedure for forming MTF ratio

In previous sections valid ways of dealing with the noise in the images and their Fourier trans-
forms were presented. A brief discussion of windowing and the effects thereof was also given.
This section will discuss the overall strategy for obtaining a signal which is representative of

the ratio of two MTF's derived from two different out-of-focus conditions.

Each image is tiled into a number of square subimages. Since the test images obtained from
the microscope are 1024 x 768 pixels, 12 subimages of dimension 256 x 256 were chosen. If
the subimage is chosen to be larger, the resolution in the resulting Fourier transform will be
higher, but fewer subimages will be available. The number 256 was chosen mainly because it
is a power of 2 and because it is fairly small. Both of these factors facilitate a transform that
will be quick to calculate. Each of these subimages is transformed and the modulus taken,

and a pixel-by-pixel average of the results created.

As has been mentioned, the effect of windowing was ignored. It was however felt that the
major effect of the rectangular window could possibly already have been taken into account

in the constant offset factor C in equation 3.18.

This factor C is then found by averaging a number of pixels in the periphery of an image
which is known to be considerably out of focus. Once found, this value is subtracted from the
subimage average that was formed. The signal that results represents either -7 | [Ny (wy, wy)|
or Y8 _; |Dg(wg,wy)| in equation 3.28. The numerator and denominator subimages are then
chosen, and that equation can be used to form the noise-reduced 2-D representation of the
MTF ratio.

Following the formation of the ratio, the angle must be specified at which the 1-dimensional
MTTF ratio profile is required. The median of all the points at each distance from the origin
which lie within some angle of the required line is then found. Naturally some quantisation
of distances has to be performed here, since all pixels do not lie at integral distances from the

origin.

It should be noted that in the division process, division by zero is flagged as positive or negative
infinity, depending on whether the numerator is positive or negative. These singularities are
usually eliminated in the formation of the 1-D signal by the process of taking the median.
Division of zero by zero is here defined to be zero, since this will result in the zeros of the

ratio being the same as those of the numerator, which may be useful in later manipulations.
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The resulting signal is then considered to be the noise-reduced profile of the MTF ratio along

a line at that specific angle.

Calculation of the MTF

By dividing each transformed out-of-focus image by the transform of the in-focus image, the
dependence on the specimen is effectively removed and what remains is the ratio of the two
MTFs used to form the original images. However, insofar as the denominator MTF is a
uniform constant, this quantity is just the MTF of the microscope for the out-of-focus level
at which the numerator image was taken. This corresponds to the assumption that the image
taken at best focus is a good approximation of the image field itself, or equivalently, that
the image was formed using a PSF that very closely approximated a point. It should be
noted that in fact the dependence on the specimen is not entirely removed by this process;
the windowing discussed earlier prevents this from being exactly possible. For now this fact
is ignored. The favourable results obtained later in this chapter suggest that this omission is

not too detrimental.

This procedure was followed for the eight images far2 to far9, dividing their transforms by
the transform of farl. The division process used is the one described above, where a constant
value is subtracted from each transformed subimage average before ordinary division is done.
This results in 8 representations of the MTF of the system for the 8 corresponding out-of-focus

levels. Two such MTF representations are shown in Figure 4.2 and Figure 4.3.

Generating 1-D representations

To reduce noise further, the radial averaging technique that was discussed is employed. Here,
pixels in an entire sector surrounding a line are considered, and for all pixels the same distance
from the origin the median is formed. In doing so the points further from the origin are
subjected to a greater degree of averaging (and hence noise reduction) than those nearer the
origin. However, since the signal is so much higher nearer the origin, the signal to noise ratio
here is fairly high in any case and less averaging is needed. For the case of an astigmatic image
where radial symmetry does not exist, there is a limit to the angular size of the sector that

can be used in this process before this averaging begins to significantly corrupt the signal.

For each of the MTFs generated in the previous section, this radial averaging process was
performed. Four of the resulting MTF profiles are shown in Figure 4.4 for the first four

out-of-focus levels.

Also shown on these plots is the best-fit Gaussian to each of these transfer functions. They

are best-fit in the least-squares sense, which means they minimise the sum of the differences
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Figure 4.3: MTF extracted for out-of-focus distance 0.7mm corresponding to image far6.
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Figure 4.4: Noise-reduced profiles of MTFs corresponding to images far2, far3, far4, and
far5 (solid lines). Also shown (in dotted lines) are the best-fit Gaussians to these functions
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between the two functions at every point for the range displayed on the graphs. This is to
demonstrate the degree to which the widely made assumption of a Gaussian beam profile is

accurate.

Of note is the apparent similarity between the MTFs for the different focus levels. It seems
reasonable to say that each MTF is just a stretching or a compression in the horizontal
direction of any other MTF. This property will be referred to as the self-similarity in the
MTF at different positions along the beam. The characteristics of this self-similarity will be

discussed in the following section.

4.3 Analysis of results

The results presented in the previous section will now be discussed in terms of their significance
to the development of an autofocus system. The data needs to be analysed to detect any trends
that exist that can be used to provide information regarding the degree of defocus for any

given image.

4.3.1 Relating the spatial to the frequency domain

Before the results are presented, the nature of the relation between the spatial and the fre-

quency domain needs to be clarified, particularly with respect to self-similarity.
Consider the Fourier transform property

Wy W

Flaz,by) = F(2, %) (4.2
where F(wg,wy) is the Fourier transform of f(z,y). f(az,by) is a function that represents
f(z,y) compressed by factors @ and b in the x and y directions respectively. This relation
now states that the Fourier transform of the function f(az, by) will be related to the function

F(wg,wy) by an overall scaling and a stretching in these two directions, by the same factors.

The effect of this is that if the MTFs are assumed to be self-similar, then the corresponding
system PSFs will also be self-similar. Furthermore, if MTF; is twice as wide as MTF5, then
the corresponding PSF; will be half as wide as PSF5.

4.3.2 Gaussian approximation

Figure 4.4 showed Gaussian curves fitted to the extracted MTF's for each out-of-focus level.

It can be seen that the Gaussian only roughly captures the shape of the MTF. Apparently the
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slope of the MTF is steeper than can be approximated by a Gaussian, and it has a sidelobe
which the Gaussian cannot match. We will however proceed with the analysis ignoring these

differences, since on the whole the Gaussian approximations seem to be reasonable indications
of the width.

The standard deviations of the best-fit Gaussian curves are given in Table 4.1 for each distance
from focus. The final column shows the standard deviation of these Gaussian curves as
referred back to the space domain. Therefore, inasmuch as the MTFs approximate Gaussian
distributions with the standard deviations given in the third column, the PSF in the space

domain will approximate a Gaussian with standard deviation as given in this last column.

Image Name | Dist from focus | std dev | std dev
freq space
(mm) (pixels) (m)
far2 0.1 86.225 | 1.157e-7
far3 0.2 48.171 | 2.070e-7
far4 0.5 20.820 | 4.790e-7
fars 0.6 17.351 | 5.747e-7
far6 0.7 15.072 | 6.616e-7
far7 1.0 10.117 | 9.857e-7
far8 1.1 9.027 | 1.105e-6
far9 1.2 8.234 | 1.211e-6

Table 4.1: Standard deviations in spatial and frequency domains of best-fit Gaussians to the
MTTF for each defocus level

The conversion factor from the frequency to the spatial domain had to be found empirically

from a known image. It is a scaled reciprocal relation.

Now if the standard deviation in the frequency domain is plotted as a function of out-of-focus
distance (see Figure 4.5), it can be seen that the curve closely approximates a hyperbola.
This becomes more evident if the standard deviation of the Gaussians in the spatial domain
is plotted (see Figure 4.6); a hyperbola in the frequency domain will manifest itself as a linear
relationship in this domain.

From these plots it seems reasonable to suggest that there is a linear relation between the
standard deviation of the assumed Gaussian PSF and the distance from focus. This can

certainly be said to be the case for the distances from focus that are being considered here.
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Figure 4.5: Standard deviation of best-fit Gaussians in the frequency domain plotted as a
function of the distance from focus
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Figure 4.6: Standard deviation of best-fit Gaussians referred to the spatial domain plotted as
a function of the distance from focus
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Chapter 4: Determinism in Image Formation

4.3.3 Self-similarity approximation

Although the results from the Gaussian approximation are promising and suggest that there
is a large degree of determinism in the operation of the system, it is difficult to develop
further using this model. Instead, we would prefer to use the more general assumption of
self-similarity of the MTFs, for which the Gaussian assumption can be said to be a specific

case.

An analysis was made using the MTF corresponding to image far3 as a template for com-
paring the other MTFs. For each out-of-focus level, the MTF was stretched or compressed
by an amount that minimised the mean square difference between this modified function and
the template MTF. For example, Figure 4.7 shows the MTF used in the formation of image
far6 as well as the MTF for image far3 that is to be used as the template. Figure 4.8 now

1.2 :

0.8 -

0.6 -
MTF

Value
04

0.2 -

_02 | | | | | |
0 20 40 60 80 100 120
Pixels from centre

Figure 4.7: MTFs corresponding to images far3 and far6

shows the same template MTF, but the MTF for image far6 has been stretched horizontally
by a factor of 3.2041. This was found to be the optimal stretch for minimising the difference

between these two functions.

This process of finding the optimal stretch for matching an MTF to the template was per-
formed for the eight out-of-focus levels, and the results presented in Table 4.2. If a plot is
made of this stretch value against the distance from focus, it is seen that here too a linear

relationship exists (Figure 4.9).

Thus it can be seen that the assumption of self-similarity allows for a very simple model

49



Section 4.3: Analysis of results
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Figure 4.8: MTFs corresponding to images far3 and far6, except that here the latter has
been stretched horizontally by a factor of 3.2041

Image Name | Dist from focus | Best stretch
(mm)

far2 0.1 0.597561
far3 0.2 1

far4 0.5 2.309
fars 0.6 2.768
far6 0.7 3.179
far7 1.0 4.707
far8 1.1 5.263
far9 1.2 5.783

Table 4.2: Optimum stretch values for matching MTFs corresponding with each out-of-focus
level to that of far3
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Chapter 4: Determinism in Image Formation
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Figure 4.9: Factors by which MTFs need to be stretched, plotted as a function of the distance
from focus

of image formation to be constructed. There is a linear relation between the width of the
MTF and the distance from focus. This model is powerful because it eliminates the need
to know anything about the shape of the MTF. It is thus more general than the Gaussian

characterisation.

4.4 Construction of Beam model

The previous section demonstrated how, if the relative width of the MTF's are examined, the
size of the point-spread function of the system is found to be proportional to the distance
from the beam crossover. This conforms to the suggestion that the electron trajectories are

straight lines, with an approximate zero crossover at the point of focus.

In order to find out more about the specifics of image formation in the SEM, it becomes
important to have some idea about how the beam configuration affects the resulting images.
To do this it helps to have a simple parameterised representation of the beam current density
profile. This can then be used to discover trends in the image formation process. The findings
of the previous section provide this simple representation. If it is found to be necessary, a

more representative model can be developed.
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Section 4.4: Construction of Beam model

4.4.1 Simple linear model

For purposes here an aberration-free electron beam will be defined to be ideal if there are no
diffraction effects and the beam has a zero crossover at the point of focus. The trajectories
of the electrons will be assumed to be straight lines. Such a configuration with a focal length

fz is shown in Figure 4.10.

Aperture
plane

Beam cross-

sections

focal length S

da

Figure 4.10: Ideal Electron Beam

Since the electron paths are straight lines, the total current through a tube with sides coin-
ciding with electron trajectories will be conserved. If the beam profiles at distances d; and

dy from focus are considered, with corresponding beam widths s; and so, then the following
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Chapter 4: Determinism in Image Formation

relation holds
52

I(zy) = (2P R(Fe, 2y) (4.3)

81 81 81
where J1 and Jo are the current density distributions of the beam at those positions. The
scaling factor (s/s1)? is required to ensure that the total beam current is conserved. Addi-
tionally it is assumed that the beam width s is a linear function of the distance from focus d,
and that at focus the width is zero. If a hypothetical current density distribution Jy(z,y) is
now defined for a distance f, from focus (i.e. at the aperture), then for any distance d from

focus the beam profile is

Ta) = (a2 (4.4

Note that this relation will certainly not hold in practice for d = f, since aperture effects will

dominate, nor for d =~ 0, where the prediction of a point beam will be an idealisation.

Linear model in the frequency domain

Under the assumptions made above, the beam in the frequency domain can be represented
in terms of the distance from focus. Using Equation 4.4, in the Fourier transform domain it
can be said that

FlI(2,y)] = F[k*Jo(kz, ky)] (4.5)

where k = f,/d and F represents the Fourier transform operation. Letting F[J(z,y)] =
J (wg,wy) and F[Jo(z,y)] = Jo(wg,wy), this becomes
1

j(wwawy) = k2[W«70(ww/kawy/k)] (4.6)

and since k is real,

T (we,wy) = Jo(wz/k, wy/k) (4.7)

Thus it can be seen that for this model the frequency domain beam representation for different
distances from focus differs only in a linear scaling in the w, and wy directions. This is
consistent with the results presented in the previous section, where the relationship between

MTF width was seen to be linear.

4.4.2 General representation of Gaussian

A widely made assumption in SEM literature is the assumption of a Gaussian PSF [7, 26].
For the situation here this has been shown to be a reasonable assumption. At least for low

frequencies the mainlobe of the MTF approximates a Gaussian.
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Section 4.5: Computed beam profiles

The general form of a 2-D Gaussian normalised to unit volume is

1 —z2 ;9_2
p(z,y) = e e (4.8)

2moL0oy

Here o, and o, are the standard deviations in the z and y directions respectively. Note that
the 2-dimensional Gaussian is separable, and can be written in the form p(z,vy) = p1(z)p2(y)-

The frequency domain representation of this Gaussian will be

—odu} —oyey

P(ww’ wy) =e 2 e 2 (49)

This can be seen to be a 2-D Gaussian of the form

2
w2 —w

_ =
Plwg, wy) = e2owa)? g2ewy) 4.10
y

with o, = 1/0, and 0, = 1/0,. Thus the transform of a Gaussian is simply a rescaled
Gaussian with standard deviation the reciprocal of that of the original. The simple closed-
form of this solution is very convenient, and it is significant to note that the transform of a

Gaussian has no imaginary part.

Assuming the beam current density to be Gaussian implies a nonzero current density infinitely

far from the centre of the beam. Clearly this can never be the case.

4.5 Computed beam profiles

The previous sections provide for a model of the beam which exhibits some predictable char-
acteristics. The primary assumption is that of self-similarity of the MTF profiles for varying

degrees of out-of-focus.

It is possible to calculate the actual electron density of the beam at different positions along
its length. Appendix E provides an outline of some of the relevant theory needed to achieve
this. The difficulty then becomes that of finding values of the parameters to adequately
model the beam. In our case this was not necessary - Leica Cambridge Litd contracted out to
a specialist company to compute a number of beam profiles for the S440 at different positions

along the beam.

Altogether 37 beam profiles were computed, starting in the Gaussian image plane and ex-
tending to a total defocus of 10mm. Some examples of the resulting profiles are shown in
Figure 4.11. The operating voltage for the calculations was 10kV. It is interesting to note

that although the profile is Gaussian near best focus, this becomes untrue as the defocus is
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% \

/ \\
0 0.05um 0 0.1um
(a) Defocus: Omm (b) Defocus: 0.01mm
0 0.5um 0 0.2um
(c) Defocus: 0.05mm (d) Defocus: 0.2mm

Figure 4.11: Profiles of the electron density of the beam for the S440 for varying distances
from the Gaussian image plane
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Section 4.5: Computed beam profiles

changed. The distribution quickly becomes bimodal, and eventually tends to uniformly flat

distribution as the defocus becomes large enough.

Although these data may seem to refute the self-similarity assumption, this is not the case

for two reasons:

e Despite the fact that the PSFs vary widely with changing defocus, the transformation to
the frequency domain reduces this variation. Thus the MTFs may still exhibit significant

self-similarity.

e The secondary electron yield has been shown to be a linear convolution of the image
field with the electron density of the beam. This does not necessarily apply to the final
detected signal, however, since the transfer function of the rest of the system has still
to be included. The effective PSF is thus the electron density modified by this transfer

function.
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Chapter 5

Autofocus Method

In section 2.5 the approach to developing an autofocus algorithm was presented. It was shown
that if two images are taken of the same area of the specimen but using different focal lengths,

then the ratio of the transforms

Fi (wg, wy) _ Hi(wg, wy) (5.1)
Fy(wg,wy)  Ho(wg,wy) '

might be useful in finding the position of the crossover of the beam, which is the position of

best focus.

Methods were then discussed of how a reduction of noise can be effected in the formation of
a 1-dimensional representation of this ratio. This 1-D signal is only representative of a radial

cut through this ratio at a specified angle, due to possible astigmatism in the beam.

Finally in the previous chapter it was shown that the MTF (and hence the PSF) of the system
is roughly the same for varying out-of-focus levels, except for a change in the overall width.
Thus each MTF can be considered to be a stretching or compressing of any other MTF in the
horizontal direction. Furthermore, it was shown that the width of the PSF is approximately

proportional to the distance from the beam crossover.

In the sections which follow, all these findings are brought together in outlining ways in which
knowledge of such ratios and the associated positions of their formation can be used to find the
position of best focus. The methods presented in this chapter assume that the electron beam
forming the images is free from astigmatism. The case for the introduction of astigmatism is

deferred until later.

The chapter begins by formalising the linearity criterion. It is shown that this linearity
assumption can be used even if it is only differentially valid. The self-similarity condition is

added, effectively resulting in a situation that can be modelled by the equation f(kz)/f(x) =
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Section 5.1: Development assuming linear model

g(z), where f represents the MTF profile and g the ratio signal. Equations of this form are
then discussed in detail. It is shown that under continuity restrictions this equation has a
unique solution in f, and a numerical method is proposed for calculating this solution. It
is shown how, in theory at least, a general autofocus method can be developed using just
these findings. A practical implementation is described which uses the notion of an implicit
template. This implementation failed because it was sensitive to noise. A description of the

precise cause of this failure in the procedure is then given.

The assumption of a Gaussian MTF is used to derive a closed-form solution to the autofocus
problem. Two ratios are formed using three images taken at different focal lengths. The
development proceeds incrementally, introducing restrictions as they are required. It is shown
that under the assumptions made, three images is the minimum required to eliminate the
system-specific parameters. The solution is restructured to incorporate a search method for
finding the position of best focus. The solutions obtained for this search are known to be
unique under certain conditions because of the closed-form solution. The restructuring to a
search allows for the assumption of a Gaussian MTF to be dropped, which results in a general

solution which uses a representative template MTF.

5.1 Development assuming linear model

Before beginning the discussion it is necessary to demonstrate the general configuration of
a beam for a particular out-of-focus condition. Figure 5.1 shows the situation of a beam
with a focal length f impinging on a specimen a distance d from the aperture. The lightly-
and darkly-shaded regions combined represents the actual electron beam. For purposes of the
figure this beam is shown to be slightly curved. However, given that the beam is approximately
linear in the vicinity of the specimen, it is possible to extrapolate towards the aperture and
define an effective ideal beam for the case of it being perfectly linear. This is depicted by the
darkly-shaded region alone. In this way it is possible to use the linear assumption even in
the case where it is only differentially valid. In Figure 5.1 a is then defined to be the effective

width of the beam as referred to the aperture.

By similar triangles the expression for the width s of the beam at the specimen is

_ =l
f

The precise definition of this width has intentionally been left unspecified. It can therefore

s (5.2)

represent either the standard deviation of the beam profile or the factor by which some
reference signal must be stretched or compressed to match this profile. Both these cases were

shown to conform to the linear model in the previous chapter.
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— - Aperture plane

Beam crossover

Specimen

Figure 5.1: Standard deviation of Gaussian PSF with changing distance (under linear as-
sumption)

5.1.1 Equations of the form f(kx)/f(x) = g(x)

In order to get more information from the ratio Fy/F, (or equivalently Hy/Hs), it is helpful
to discuss briefly the nature of the equation f(kz)/f(z) = g(x), with g(z) a known function
and k£ € R,k > 1 a specified constant. What will now be shown is that the equation has a

unique solution in f under the restriction that f be continuous at the origin.

Suppose that the equation can be satisfied for two solutions fi(z) and fo(z). It is assured
that

filkz) = fi(z)g(x)
fo(kz) = fa(z)g(x) (5-3)

Dividing, this then becomes

f1kz) _ fi(@) 6.0

fa(kz)  fo(z)

Now, letting

_ hil=)
(@) = 2 (55
it must be true that
p(kz) = p(z),Vz € R (5.6)
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Section 5.1: Development assuming linear model

Assuming continuity of f(z) at 0, the ratio p(z) = f(kz)/f(z) will be continuous at 0 provided
that f(0) # 0 [9, p.252]. By one of the definitions of continuity it can be said that

Ve > 0,30 >0 s.t. z € (—6,0) = |p(z) —p(0)] <e (5.7)
However, p(z) = p(kxz), so for the same ¢, ¢ it must be the case that
z € (—0,0) = |p(kz) —p(0)| <€ (5.8)
which is the same as

z € (—kd,kd) = |p(z) —p(0)| <€ (5.9)

Repeating this process n times, this becomes
z € (—k"0,k"6) = |p(z) —p(0)| < e (5.10)

Now since 4 is a finite constant and k > 1, the condition = € (—k"4, k") can be extended to

include the entire real line by taking n large enough. Thus equation 5.7 can be written
Ve >0,z € R, |p(z) —p(0)] < e (5.11)

In the metric space of functions under the supremum metric

o(f(x),9(z)) = sup|f(z) — g(z)| (5.12)
TER

it can therefore be said that the distance o(p(z),p(0)) = 0. If this is not the case then there
must be some v > 0 such that v is a least upper bound of |p(z) — p(0)|. This presents a
contradiction since v/2 can be shown to be a least upper bound by choosing € = v/2 in
equation 5.11. By the definition of a metric space, p(z) = p(0) for all z € R. Thus p is
a constant function. Going back to equation 5.5, this shows that fi(z) = p(0)fa(z). Since
for a family of MTFs f1(0) = f2(0), this scale factor p(0) equals unity, and it must be the
case that fi(z) = fo(x). Therefore under the conditions of f continuous at 0, the equation
f(kz)/f(xz) = g(x) has a unique solution in f.

For the condition 0 < k£ < 1, the entire argument can be repeated using the inverse ratio
instead. Of course for ¥ = 1 there will be no solution unless g(z) = 1, in which case there

will be infinitely many.
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Chapter 5: Autofocus Method

5.1.2 Finding f(x) for discrete data

Only the case of the numerator MTF being the one with the smaller extent (k > 1) will be
discussed. For the reverse situation, if the inverse of the ratio is considered, corresponding

results can be obtained.

Let f,, be the points of the numerator MTF with the smaller extent. The denominator MTF

is f7. Using linear interpolation, f} can be expressed in terms of f,

I = Fingk) + ()l — |n/k]) (Frnse) = Flask)) (5.13)

where |z] represents the largest integer smaller than or equal to z, and [z] the smallest

integer larger than or equal to z.

The ratio of the numerator to denominator MTF is

fu

15 = 9n (5.14)

So
Irn = gnlfnje) + (0/k — [n/k]) (fin/m) — finge))] (5.15)

Since k£ > 1, knowing f,, up to n points will specify f to [nk| points (by linear interpolation).
This interdependency can be used to recursively find point f,, given the prior points fy ... fr_1-
Thus, with an assumed starting point fy and given g, and k, f, can be uniquely deduced.
There are two cases:

n = [n/k] : Under this condition, equation 5.15 becomes

fn = gnlf\nsky + (0fk = [n/E]))(fo = Finr))] (5.16)

which solving for f, yields
o e+ Lnjk] — /i
" 1gn + |n/k] —n/k

n > [n/k] : For this situation equation 5.15 can be used as it stands.

(5.17)

These equations can be used because f|, /x| € [fo,--- fn—1]. This defines a method of extract-

ing the assumed self-similar MTF given the difference & in stretch between them.

5.1.3 General autofocus method

In the previous section a method was presented of extracting either of the assumed self-similar
MTTF profiles from a ratio signal given only the stretch factor between the profiles. In theory

this can form the basis for a method by which the position of the specimen can be determined.
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Section 5.1: Development assuming linear model

Consider the configuration depicted in Figure 5.2. This now represents a specimen being

Specimen

Figure 5.2: Configuration for prediction under linear assumption

imaged under three different focal lengths for the case of an ideal beam. Each dashed line

indicates the position of the beam crossover during the formation of the images.

The width of the beam at the specimen for each case of the three focal lengths is

Sl(d) — a|flf: d|

Sg(d) — a|f2f; d|

s3(d) = oMf2=dl (5.18)
f3

where s, is here chosen to be the width in the sense of stretch factors from a template profile
as mentioned in section 5.1. This means that if hy.f(z) is a template representing the assumed
ideal PSF profile, then PSFy, is given by hy (7).

Since PSF; and PSF; can be represented by this template stretched by factors s; and ss, to
a good approximation PSF; is just PSFy stretched by a factor s1/se. It follows then that
MTF; is MTF, stretched by the reciprocal of the ratio, so/s;. Notice that these ratios are

independent of the value a. The reason that this is said to be an approximation is that no
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Chapter 5: Autofocus Method

distance measure between the functions has been defined yet, and in general it will probably

not be exactly true unless the profiles are precisely self-similar.

Defining k1(d) = s1/s2 and ko(d) = s3/s9, the ratios MTF; /MTFy and MTF,/MTF3 can be
formed. These quantities are now assumed to conform closely to the model

MTF1 . HQ (kl .’I?)
MTF,  H(z)
MTF, Hj(z)
= 1
MTF3 HQ(k‘QIE) (5 9)

where k1 and ko depend on the unknown position of the specimen d.

If k1 and k9 can be found from these ratios, then equations 5.18 can be used to form two
equations in d. However, unless something is known about the signs of the quantities f1 — d,
fo—d, and f3 — d, there will be multiple solutions to these equations, some of which may be

invalid.

A simpler way is to do a search through the possible specimen positions, knowing the config-
uration of the beam for the three focal lengths. For any assumed value dg,4s of the specimen
position, corresponding values of k; and ke can be calculated. If these values coincide with
the values obtained from the ratios, then this value of d s is a possible value for the specimen

position.

A complication arises in that no means has been found to obtain values of k1 and ks directly
from the ratios without specifying Ho(z). It is however possible to use a search approach
to check if a given set of ratios are consistent with an assumed specimen position dg,s. In
order to do this the results from the previous section are required: values of k1 and ko are
calculated for this assumed position d,s. The value obtained for ky is then used to find
the function Hy(z) from the ratio Hy(kyx)/Ho(x). Similarly the value ko is used to find a
second evaluation of this function Ha(z), this time from the other ratio. Insofar as these two

evaluations are identical, d s is a possible value for the specimen position d.

Notice that in no case is the actual MTF profile required for this procedure; it is completely
general and only makes use of the assumptions that the width of the beam is differentially

linear with respect to distance from crossover, and that the profiles are self-similar.

The proposed autofocus method is to find the two MTF ratios from the data, and then to
search through the possible values of d,z. The values for which the two estimates of Ha(x)
are most similar are then candidates for d. It is unclear how many such candidates there will
be. Furthermore, since the function Hy(z) has remained unspecified, it is impossible to assess

how sensitive the estimates will be to noise in the ratios.
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Section 5.1: Development assuming linear model

5.1.4 Results of general autofocus method

The search method described in the previous section was implemented and tested on a
through-focus image series. It was found that it worked poorly, generally returning estimates

for best focus which were very far from the actual distances.

An in-depth analysis was made of the process and the cause of this failure isolated. It was
found that the process of extracting the estimate of the MTF from the ratio (given the stretch
factor) was susceptible to the large degree of noise which is to be found in the MTF ratio

profiles.

Figure 5.3 shows the actual MTF associated with image far 4 (0.5mm from crossover). The

T T
Original MTF —

1 \//\/\ Recovered MTF - - - -
LT

C 2\

MTF R

value e \

0 10 20 30 40 50 60
Pixels from centre

Figure 5.3: MTFs before and after extraction from ratio

ratio of this MTF to the MTF corresponding to far 3 (0.2mm from focus) was then formed,
and the theory presented in section 5.1.2 used to extract what should again be the original
MTF, using the knowledge that k£ should here be 2.5. This recovered MTF is also shown
in the figure. The two MTFs should be identical. It can, however, be seen that there is a
significant difference between these two profiles, particularly at low frequencies. No analysis

was made as to the degree to which these profiles are different.

The difference is coming about because the self-similarity assumption is in practice not per-
fectly accurate. It is felt that the major cause for this is noise in the MTF ratio profile. It
could also partly come about due to the rectangular windowing, which results in the image

dependence not being completely removed from the ratio. The procedure might however work
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Chapter 5: Autofocus Method

for an imaging system where there is less noise present.

5.2 Development assuming Gaussian beam profile

The use of an implicit template, although theoretically sound, was shown in the previous
section to be ineffective in the presence of noise. It therefore becomes necessary to explicitly

specify the template before continuing further.

A widely made assumption is that the MTF has a Gaussian profile. For this assumption,
the problem of autofocus takes on a closed-form solution if the relation between the standard
deviation of the PSF and the distance from crossover is specified. Even if the assumption is
not accurate enough to be used in a final implementation, this case is of theoretical interest

in finding trends which may be of use in the development of other methods.

5.2.1 Gaussian development with no linear assumption

For now consider only the case of a rotationally symmetric beam profile (no astigmatism). In

this case (see section 4.4.2) the beam current density profile can be written as

1 =(22+y?)

9ro2¢ 202 (5.20)

h(a:,y) =

It is assumed that some criterion has been used to sensibly and accurately relate the standard
deviation o(d, f) of the beam to the distance d of the specimen from the lens for a beam of
focal length f. In the frequency domain the MTF is then

o (d, )2
H(wg,wy) =€~ G (wi+w)) (5.21)
For the ratio of two MTFs |H; (wg,wy)| and |Hz(wg,wy)| with corresponding focal lengths fi

and fo and a specimen at distance d,

| H |
@(ww,wy) =e

_ (aQ(d,fnZ—aZ(d,fg))(
2

witwy) (5.22)

which has a resulting variance of

1

9 _
Ores(d, f1, f2) = o2(d, f1) — 02(d, fo)

(5.23)

It is useful at this point to permit this variance to take on negative values. This will occur
when the numerator MTF has a standard deviation greater than that of the denominator. In

this case a Gaussian with a negative variance will just be a curve which grows exponentially
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Section 5.2: Development assuming Gaussian beam profile

with increasing (w? + wz) instead of going to zero.

If the ratio of two MTFs is now considered, oes(d, f1, f2) can be measured directly as the
variance of this quantity. There is then an implicit relation between d, f1 and fo by means of
equation 5.23. This can be used directly to calculate the distance d of the specimen from the

lens, and the focal length set to this.

5.2.2 Continued development making linear assumption

In the previous section the relation o(d, f) was left unspecified. In order to make the method
described more concrete, the analysis will be continued with the assumption that the standard
deviation of the Gaussian beam profile in the spatial domain is a linear function of the distance
from focus. This was shown in section 4.3.2 to be a good approximation. Figure 5.1 is again
used to demonstrate the beam width at the specimen with changing focal length. In this case
the width is chosen to relate to the standard deviation of the PSF.

If o is the standard deviation of the point-spread function, then the same relation as before
holds

—d
o(d, f) = a% (5.24)
Using equation 5.23, it can then be said that
a?es(daflafé) = 9/ fi—d\2 ! o/ f2—d\2 (525)
a*( J1 ) —a (T)

In a practical situation a could be specified beforehand. In this case the above expression is a
quadratic equation in d, and there are two valid solutions. The ambiguity arises because the
beam is symmetric about the plane of the crossover. The effect of this is that there are two
possible specimen positions which will result in the same MTF ratio. This ambiguity would

have to be resolved by making use of additional information.

The suggestion of fixing a represents a loss of generality in two ways; firstly, a has to be
specified for any viewing condition for any given microscope. Furthermore, it assumes that
the beam is precisely linear from the aperture plane to the specimen and the two focal planes.
This makes it impossible to use the approximation of localised linearity near the focal and
specimen planes without specifying a different value of a for different region along the length
of the beam. Fortunately it is possible to remove these restrictions by making use of a third
image and forming two separate ratios, as was done for the general autofocus case of the

previous section.

Designating the three MTFs corresponding to focal lengths fi, fo and f3 by |Hi|, |Hs| and
|Hs|, the ratios |H;|/|Ha| and |Hs|/|Hs| can then be formed. The quantities o2, (d, f1, f2)
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and o2, (d, f2, f3) can be found directly from these ratios. Equation 5.25 can be used to give
res2

two independent equations in d and a, from which the unknown a can be eliminated. The

resulting equation yields a unique solution to the unknown distance d.

The fact that this solution is unique will be demonstrated: solving each of these equations

for 1/a?, the following is obtained

- (o) (- 3)1
onlpeGond e

Equating the terms in 1/a? and dividing by d # 0, a linear equation in d results. This can be

\)

solved, yielding

2 2 2 2 2 2
d Uresl(f_l - E) - areSQ(_2 - ﬁ) (5 27)
) (L_L) o2 (L _L) )
resy f2 f22 TESD f22 f32

Thus for the case of a Gaussian MTF the position of best focus has a closed-form solution in

terms of the focal lengths used and the standard deviations of the resulting ratios.

5.2.3 TUse of search method

In the previous section an expression was obtained for the predicted specimen position in
terms of the standard deviations of the MTF ratios. It is possible to reformulate this finding
into a search method much like the one presented for the general autofocus method earlier
in this chapter. The reason for wanting to do this is that when the restriction of a Gaussian

MTTF is dropped, the closed-form solutions that have been given cannot be retained.

In the same way as before the MTF ratios are assumed to conform to a model which is

consistent with a linear beam. The expressions are now

MTF1 . Ht(kklﬂi)
MTF2 N Ht(k.T)
MTF, H,(kz)
= — 7 5.28
MTF3 Ht(kkg.’,()) ( )

where H;(z) is assumed in this case to be a Gaussian function of arbitrary width. MTF is

then given by Hy(kz) for some value of k which is not yet specified.

Assume however that this k is known. The same approach that was used for the general
autofocus method can then be used to iterate through the possible specimen positions d s,
and corresponding values calculated for k; and ko. Representations of MTF;, MTFy and
MTF3 can then be created by stretching the template MTF by factors 1/(kki), 1/k, and
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Section 5.2: Development assuming Gaussian beam profile

1/(kkz) respectively. The accuracy of each possible position d,ss can be assessed by forming
the two ratios from these representations and comparing them to the actual ratios. The value
of d,ss for which these two sets of ratios are identical should be the required value d, since

this position has been shown to be unique.

Furthermore, it can be shown that this best distance implies a unique value for k (or at least

for ka where a is a constant). Assuming that the template MTF has standard deviation

o, the standard deviation of MTFs will then be ko;. In terms of a model including this

additional parameter k, Equation 5.24 for the standard deviation of the PSF can be written
—d

o(d, f)= ka% (5.29)

Thus all the results from section 5.2.2 carry forward by simply substituting ka for a in all the

equations. In particular, it can now be said that

1 ) 11\ , ( 2 2 ) ]
— = —— = |d ———)d
k2q2 Trest [(1012 f22) * fi [
1 ) 1 1\ , ( 2 2 ) ]
— = — — = |d ———)d 5.30
pe ~ (7 7) " (Gx (>:30)
and as before the ratios will be identical only for a single assumed distance. The right hand
side of these equations are therefore unique. The quantity k?a? must then also be unique for
the correct position. That is to say, in the two-dimensional space of d versus k?a? there is
only one point where the consistency criterion of equations 5.28 can hold. Since negative k

has not been defined, the resulting negative solution to k is invalid. Therefore this unique

point also maps uniquely into the space of d versus ka where k is restricted to be positive.

It has thus been demonstrated that insofar as the beam is linear and the profile Gaussian,
there is only one combination of d and ka which is consistent with the actual data. In every
other case the generated and actual ratios will differ from one another. Thus an exhaustive
search through all possible values of d and ka will ultimately yield the required specimen
position. As long as the distance measure which is applied to the ratios is exactly zero if and
only if they are identical, the global minimum of the distance measure will necessarily yield

this point.

Finally, as long as the distance measure is well-behaved it might be expected that it would
be continuous in (d, ka)-space. This means that at worst the required point will be a local
minimum in this region. If this is the case then it will facilitate 2-D searches being made in
the space to find the minimum. The proofs of continuity and local and global extrema are
dependent on the distance measures used, and will not be presented. The reason for this
omission is because no distance measures have yet been defined. In Chapter 6 where some

distance measures are introduced, these factors are discussed again.
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Chapter 5: Autofocus Method

5.3 Development using linear assumption and specified tem-

plate

The method proposed for finding the specimen position in the previous section was indepen-
dent of the assumption that the template be Gaussian. The search method proposed did at
no stage rely on the Gaussian limitation. The assumption of a Gaussian MTF was only made
use of in the proof that the method results in a unique and correct solution for the unknown

aperture-to-object distance.

It is therefore possible to propose a more general method not making the assumption of a
Gaussian beam profile but retaining the condition of linearity. This can be achieved by simply
allowing the template MTF profile H;(z) to take on any shape. The cost of this generalisation

is that it is no longer possible to prove that the solution obtained will be unique.
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Chapter 6

Algorithm Implementation and

Analysis

There are a number of factors that need to be discussed concerning the details of an imple-
mentation. The most important of these is undoubtably the definition of a distance measure
for assessing the degree to which a generated set of MTF ratios match the actual pair. This
chapter discusses the distance measures, and once suitable ones are defined, they are assessed

in terms of their effect on the resulting search space.

The chapter begins by defining two distance measures: the absolute and the squared difference
metrics. The Gaussian approximation is used to derive closed-form solutions to the resulting
distances over the search space considered. These solutions are then used in a sensitivity
analysis for a specific imaging configuration. It is seen that in this case the point of best focus
corresponds to a well-defined and unique minimum in the search space. The analysis is then
repeated for the general case where the Gaussian assumption is dropped, and experimental

results obtained.

The metric distance measures presented do not work as required. The reason is that the ratio
signal is not equally valid across its length, as the metric measures assume. Corresponding
modified measures are then proposed which weight the ratio functions accordingly before
finding the distances. It is shown that these measures appear to overcome the difficulty. The
same analysis of the search space is then made as before, but this time using the modified

distance measures.

Results are given of the effectiveness of the distance measures in predicting the point of best
focus. It is seen that over a large range the accuracy is good. The conditions under which

the prediction fails is discussed, and a method proposed for overcoming this.

Finally, it is explained how the search can be done using an intelligent gradient method to
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Section 6.1: Preliminary distance measures

reduce the number of function evaluations required.

6.1 Preliminary distance measures

For the developments of the previous chapter it was shown that a preference for the distance
measure is that it is zero if and only if the generated MTF ratios are identical to the actual
ratios. In this situation the position of best focus in (d, ka)-space is guaranteed to be a unique

global minimum.

6.1.1 Definition of distance measures

There are definite advantages to using a metric distance measure for this purpose, since
theoretical analysis is simplified by the general conclusions that may be used, particularly
in demonstrating properties such as uniqueness. Perhaps the most natural and analytically

tractable of these distance measures is the

daa) = [ le(0) - y(o)i (6.1

metric in function space. This corresponds to the city block metric in Euclidean space, and
here d,(z,y) is just the absolute area between the curves x(¢) and y(¢) within the limits

a < t < b. This will be referred to as the absolute difference metric. Alternately, the metric

b

d(z,y) = / (w(t) — y(#))%dt (6.2)

is similar but weights large differences more strongly. This will be called the squared difference

metric.

It can be seen that both of these measures conform to the requirement that
d(z,y) =0<=z(t) =y(t) fora <t <b (6.3)

which ensures a unique solution.

6.1.2 Analysis for Gaussian case

Under the approximation that the M'TF profiles be Gaussian, the MTF ratio is also Gaussian
(or the inverse of a Gaussian), which is normalised to being unity at the origin. In order
to apply the distance measures to the required problem, let the two MTF ratios which are

derived from the actual image data have variances p? and p2, while the respective ratios
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dictated by the current position in (d, ka)-space have variances o2 and o3. The function

g,2(x) will be defined to be the Gaussian in x with variance o2, such that

22

9o2(z) =€ 27 (6.4)

In all cases the variances are permitted to take on negative values, as discussed in section 5.2.1.
This corresponds to a curve which is at each point the reciprocal of a Gaussian with a positive

variance of the same magnitude.

Using the absolute difference metric

Consider initially just the first ratio, where the actual variance is p? and the estimated variance
o?. These ratios are strictly positive over all space. The distance between the ratios in the
dq(x,y) metric in equation 6.1 is just the absolute area between the curves. If both of the
variances are positive, this is equivalent to saying that it is the absolute difference between the
areas under each ratio. This is the case because a Gaussian with a larger standard deviation
is always greater than or equal to one with a smaller deviation for any given value of . In
this case the area under each Gaussian is finite and the limits @ and b can be chosen to be
negative and positive infinity respectively.

A complication arises if the variances are both negative. In this case the ratios grow without
bound with increasing distance from the origin, and the area is not finite unless p? = o?
precisely. This problem can be circumvented by considering the distance between the inverse
of the ratios, for which the integral will converge. Finally, if the variances are of opposite sign
then there is no possible match between them and the distance can effectively be considered

to be infinite.

By allowing a match to either the ratio or the inverse ratio, an area for the Gaussian can

always be defined. Thus the distance between these two ratios can be defined to be

|75 9,2 (@)da — [, g2 ()de) g2 > 0,02 >0
Dairatio 19520 902) = | 1/ 2% (9,2(2) "z — [2 (952 (2)) Hdz| p? <0,0f <0 (6.5)
00 pro? <0

Since

0o L2
/ e 22dr =V2ro (6.6)

-0

this can be simplified to

Varllp| = ol piot >0

00 otherwise

da(mtio 1 (gp%’ga%) = { (67)
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Similarly, for the second ratio a corresponding relation is defined for the quantity d, (ratio2)’

which is the distance between the curves g,2(z) and g, (z).

Since there is no reason to favour the ratio corresponding to o? over that of o3, an overall
distance between both pairs of ratios can be defined as the sum of the distances between each
pair. This leads to the expression

de, =d

+d (6.8)

A(ratio 1) A(ratio 2)

Using the squared difference metric

In a similar manner to the previous case the squared difference metric ds(x,y) of equation 6.2
can be applied to the two pairs of MTF ratios. Again negative values for the variance are

permitted, and the use of ratios and inverse ratios is similar to that of the previous section.

In this case,

J2ocl9,2 (%) = 952 (2) P da P2 > 0,07 >0
s ratio 1 (9p20902) = JZ0{(9,2(2)) ™ = (9,2 (2)) " }Pdz p{ < 0,0f <0 (6.9)
o0 pro? <0

which after some manipulation and simplification evaluates to

Var{(lpl/v2) =201/ (57 + 52)) + (o1 /V2)} p%;% >.0 (6.10)
00 otherwise

ds(mtio 1) (gpf’gaf) = {

after using equation 6.6 to calculate the area under a given Gaussian. Again the overall
distance between the two pairs of ratios is defined to be the sum of the distances between the
respective ratios

ds=d

+d (6.11)

S(ratio 1) S(ratio 2)

6.1.3 Results for Gaussian case

Using the two distance metrics that have been defined, it is possible to undertake an analysis of
how sensitive the search for the position of best focus in (d, ka)-space will be. The expressions
for obtaining 0? and o2 for the positions in this space are as presented in section 5.2.2, where
the assumption of a linear beam is also made. Unfortunately due to the complexity of the
situation there appears to be no means of assessing this sensitivity for the general case. An
analysis can however be done for any specific case of focal lengths for the three images and

specimen position.

74



Chapter 6: Algorithm Implementation and Analysis

Consider a theoretical case where the specimen is at a distance of 14.96mm from the aperture,
and the three focal lengths used for image acquisition are 14.76mm, 14.46mm and 14.26mm.
This configuration is roughly consistent with the configuration for images far3, far4, and
far6. Figures 6.1 and 6.2 show contour plots of the resulting distance measures under the ab-
solute difference metric and the squared difference metric respectively, for a range of positions

in (d, ka)-space. Note that the contour levels are not evenly spaced in these plots.
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Figure 6.1: Contour plot to demonstrate sensitivity for specific case under absolute difference
metric

These results represent an ideal in the sense that all MTF's used in this analysis are Gaussian,
and that there is assumed to be a linear relation between the width of the beam and the
distance from crossover. It can be seen that, in theory, the distance measures both exhibit a
minimum at the d-position of the crossover of the beam, as has been proven to be the case

in previous sections.

6.1.4 Generalisation of distance measures

The generalisation to an arbitrary template rather than a Gaussian one requires a slight
reformulation of the distance measures. In particular, the ratio signal can no longer be
completely described by a single width parameter; it must now be specified in relation to the

template signal. Thus the conditions in equations 6.5 and 6.9 have to be adapted.

It has been mentioned that the ratio signal may in fact not fall to zero far from the origin.
This will occur if the numerator MTF has a larger spread than the denominator. For the

Gaussian case, this corresponded to the ratio signal being a Gaussian with a negative vari-

75



Section 6.1: Preliminary distance measures

15.5

mm 0.3

m 0.6

m 0.9

=12

=15
d 15
14.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

k

Figure 6.2: Contour plot to demonstrate sensitivity for specific case under squared difference
metric

ance. The integrity of the distance measure was then retained by considering instead the
distance between the inverses of both the actual ratio and the generated ratio signals. For
the general case, however, it must be remembered that due to the noise reduction process in
the formulation of the ratio signal, the ratio and the inverse ratio may not be simply related
(inv)

by a point-by-point reciprocal relation. Thus if the ratio is R, ; and the inverse ratio R, ;,

it can in general be said that
1

Ryt 1 (55)

As a specific example, the action of collapsing the 2-dimensional ratio to a 1-dimensional

RU) (@) # (6.12)

signal that was presented in section 3.4.2 has the effect of eliminating this correspondence.
If such methods are used, then representations of both the ratio and inverse ratio must be
calculated separately, since the one cannot be determined from the other.
Again consider the first ratio. Let the actual ratio signal as given by the data be R, 1, and
the inverse ratio be stggv} The ratio signal as specified by the current position in the search
space is

Ryen 1(z) = Hi(kkiz)/Hy(kx) (6.13)

The distance measure in the absolute difference metric then parallels that presented in equa-
tion 6.5 if it is defined to be

00
da(mtio 0 (Ract 1, Rgen 1) = min {‘ [w Ryt 1(3:) - Rgen 1(.’L‘)d.’L‘|,
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7 REN@) ~ Rpen @) dal} (614)

This expression can be shown to be essentially equivalent to its Gaussian counterpart if R
and Rgep, 1 are restricted to be Gaussian. Then, except in a few special cases, only one of the
conditions {(p? > 0,07 > 0), (p? < 0,07 < 0), (p?0? < 0)} will result in a finite distance,

which will be the value of the function just presented.

The equation for the second ratio can be reformulated similarly, along with the two ratios
in the squared difference metric. As before, the final distance measure for each metric is the

sum of the values returned for each ratio.

6.2 Modified distance measures

In practice the generalised distance measures described in the previous section do not achieve
exactly what is required. If a suitable template function is chosen and the search through (d,
ka)-space carried out, it is found that the match is slightly compromised by the fact that the

MTF ratios usually have sidelobes which cannot be ignored.

This introduces the requirement for a modification of the distance measure to eliminate the
effect of these sidelobes in the comparison process. In the sections which follow the specific
details of the problem will be presented, along with the changes in the distance measure that
effect a solution. The way in which the search space is consequently altered will then be

discussed.

6.2.1 Failings of the preliminary distance measures

The way in which the two distance measures fail to meaningfully compare the signals can be
demonstrated by fitting a Gaussian to a ratio signal under one of the metrics. Consider the
ratio far4 by far5. Since the images are taken quite close together and far from best focus,
their MTFs are fairly similar. This results in the MTF ratio having a significant secondary
sidelobe beyond the range of the primary lobe. Figure 6.3 shows this ratio signal along with
the Gaussian (normalised to unity at the origin) which minimises the distance between the
curves under the squared difference metric presented earlier. It can be seen that after the
initial minimum at approximately 40 pixels from the centre, there is a region where the signal
value again grows large. This region in fact contains very little useful information: the value
is large only because in this region the denominator signal is approaching zero. Thus there is
significant noise in this region. The distance metric does not, however, bias this less strongly.

In fitting data to the curve this region has just as much of an effect as the primary lobe which
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is known to have a far lower noise contamination. This is reflected by the Gaussian fitted

curve having too large a spread. Although a Gaussian is perhaps not the most suitable curve
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Figure 6.3: Ratio of MTF's far5 and far4, along with the best-fit Gaussian to this ratio under
the squared difference metric

to fit to these data, this plot demonstrates the fact that the simple metrics that have been
proposed are affected by factors that should actually be insignificant. Although it will not be

shown here, this also holds true for the absolute difference metric.

A solution lies in modifying the proposed distance measures to include a weighting function
which ignores the signal beyond the first zero. This can be achieved without the need for

detecting the position of this zero if the template itself is used as the weight.

6.2.2 Definition of the modified measure
The relation for the first generated ratio was given in equation 6.13:
Ryen 1(x) = Hy(kkiz)/H(kx) (6.15)

This relates the template and the position in (d, ka)-space to the generated MTF ratio. Of
course, the template will always be chosen to be as accurate as possible a representation
of the actual system MTF. If a restriction on the template is now made that, beyond the

mainlobe, the value is forced to be zero, then the modified (weighted) absolute difference
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distance measure can be defined to be

o0

da(mtio 0 (Ract 1, Rgen 1) = min {' / (Ract 1(55) - Rgen 1($))Ht(kk1$)d$|7

—0oQ

| B @) = (Ryen a@) D H:lk)dal} (.16

A similar modification can be adopted in the squared difference metric, which with the weight-

ing function becomes

o0

ds(mtio n (Ract 1, Rgen 1) = min{|/ (Ract 1(z) — Rgen 1(2))” Hy(kkyz)dz],

—0o0

[ BN ~ Roen () P Hika)dal} (6.07)

Some explanation is required as to the effect of including this weighting factor. It must
be remembered that the signal with which the actual ratio is compared is the one where the
numerator template is narrower than the denominator, and the ratio signal falls off essentially
monotonically to zero (whether it is Rgey 1(z) or (Rgen 1(z))™! depends on the position in
the search space). The position of the first zero of the numerator necessarily coincides with
that of the template ratio. By multiplying by this numerator the difference between the
signals beyond the first zero of the generated ratio is weighted zero, and therefore makes
no contribution. Thus the actual and generated ratios are only considered to be different if
they differ before the first zero of the generated ratio. Furthermore, differences are weighted
strongly near the origin, with the significance falling off to zero at the zero of the template

ratio.

This modified squared difference distance measure was used to repeat the fit of a Gaussian
to the ratio of images far5 and far4 that was shown in Figure 6.3. The result is shown
in Figure 6.4. It can be seen that the sidelobe of the ratio data no longer has the effect of
distorting the width of the best-fit Gaussian.

6.2.3 Effect of modification on search space

The effect of weighting the distance measure by the smaller MTF in the ratio will now be

discussed, particularly with regard to the effect this weighting has on the search space.

It should be noted that the distance measures in function space that result from modifying
the preliminary measures no longer constitute a metric. Furthermore, there is no longer a
unique minimum for the distance measures over the search space. This fact can be simply
demonstrated if points near the line & = 0 in the search space are considered. Here the

numerator template tends towards a Dirac delta function. Since this numerator is also the
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Figure 6.4: Ratio of MTF's far5 and far4, along with the best-fit Gaussian to this ratio under
the modified squared difference distance measure

function by which the differences are weighted, all points not at the origin receive a weighting
of zero. At the origin the generated and actual ratios are necessarily approximately unity,
and thus all points with £ = 0 will return a distance of very near to zero under the modified
distance measures. The search space has therefore been fundamentally modified. The point
that was a global minimum in the unmodified metrics is still a global minimum in the search

space under the modified distance measures, but the uniqueness has been compromised.

Figure 6.5 shows a theoretical plot of the search space for the same conditions as was presented
previously, but now under the weighted squared difference distance measure. Equations sim-
ilar to 6.7 and 6.10 can be derived for these cases under the Gaussian assumption, but this
will not be presented. It is evident from the figure that additional local minima have arisen
from this modification. The position of best focus is still however a global minimum. Also
apparent is the dropping off of the distance value as the k = 0 line is approached.

An attempt could be made to improve the situation for those points where the width of
the weighting function becomes close to zero. This can be effected by dividing the resulting
distance measure by a figure which reflects the width of the weighting function. Effectively,
this represents a form of normalisation. In cases where this width is small, the distance
becomes increased accordingly. The problem with this solution is that now for very wide
weighting functions the distance is similarly deflated, and low regions are then introduced at

points far from the k& = 0 axis.
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Figure 6.5: Contour plot to demonstrate sensitivity for specific case under weighted squared
difference measure

In order to confirm that the theoretical search space under the Gaussian approximation does in
fact resemble the actual situation where the MTF template is specified, a plot corresponding
to that of Figure 6.5 was made using actual experimental data. The images used in the
formation of the ratios were far3, far4, and far6. The distances of these images from best
focus coincide with the distances that were used in the theoretical plot. The results are shown
in Figure 6.6. In both cases the weighted squared difference distance measure was used. The

similarity between the ideal theoretical search space and the experimental space is apparent.

6.3 Results for the autofocus algorithm

Having now defined distance measures that seem to be suitable, it is possible to generate
experimental results for the proposed autofocus procedure. This is of particular interest in
finalising the choice of distance measure to use, as well as in analysing the conditions under

which the algorithm might be expected to work favourably.

A number of results for the test sequence farfocus have been generated. For every combi-
nation of three images in the set of images far2 to far9 the prediction procedure that has
been described was carried out. This represents a total of 56 unique combinations of image
distances from focus. For each case the search space in the approximate vicinity of the known
point of best focus was exhaustively searched for a global minimum. The position of this
point was then considered to correspond to the actual beam configuration, from which the

beam crossover distance can be calculated. Figure 6.7 shows the first of these results for the
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Figure 6.6: Contour plot of the actual search space under the weighted squared difference
measure. The images used to generate this plot were far3, far4, and far6

weighted squared difference distance measure.

Each plot (a)-(f) presents the results for a fixed distance from best focus of the intermediate
image used in the prediction. The solid horizontal line in each case indicates this distance.
The vertical dotted lines partition the plot into separate prediction sets, each of which cor-
respond to an experiment using different input data. Since three images are required for the
predictions, the two crosses in each set indicate the distances from focus of the additional
images. For example, consider plot (a) in Figure 6.7: the leftmost interval corresponds to
input images at the three defocus distances 0.1mm, 0.2mm, and 0.5mm, with 0.2mm being
the distance for the intermediate input image. For each case the prediction process is applied,
and the distance as calculated for this intermediate image plotted using a star. The situation
for correct prediction thus corresponds to all the stars lying on the horizontal line. Note that
in some cases where the prediction procedure fails, the location of the star may not appear

in the plotted range, and is hence absent.

It is difficult to analyse the data in a systematic manner. However, the plot demonstrates

some basic trends:

e The prediction is fairly accurate if the intermediate MTF is close to focus. For points

where the actual distance is large, the reliability tends to break down.

o If the prediction fails for images which are close to focus, then generally it seems that
it occurs when at least one of the pairs of images used in the formation of the ratios are

close together.
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Figure 6.7: Prediction results for the farfocus image series under the weighted squared
difference distance measure.
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The cause of the first trend can be explained in reference to the width of the MTF as a
function of the distance from the crossover. In a previous chapter it was shown that this
relation is hyperbolic. Thus, near to focus the MTF is very wide, falling off rapidly as the
distance is increased. The effect of the template MTF being restricted to go to zero at some
point is that the first zero of the ratio will be the same as the first zero of the numerator MTF.
Thus the basic shape of the ratio is dictated by the numerator. The effect of the denominator
MTTF is then to alter the shape of this ratio between the origin and the first zero. Clearly
this is a far smaller effect to detect than the change in the zero position. If the numerator
MTF now becomes narrow, the deviation caused by the denominator MTF profile becomes
less significant. Huge changes in this denominator will then cause only marginal changes in
the ratio signal. In the presence of noise this becomes catastrophic to the prediction process

because the distance measure no longer exhibits a suitable minimum.

The observation that the prediction fails more readily if the images forming the ratio are close
together can also be simply explained. In the limit as the distance between the images goes to
zero, no prediction can be made because data has been irrecoverably lost. It follows then that
if the images are close together then the effectiveness of the prediction will be hindered. The
discussion of the first trend also makes it apparent that this closeness has to be considered in
relation to the actual distance of the images from the crossover. MTFs separated by a fixed
distance far from focus will differ from one another far less than MTFs separated by the same

distance but nearer to the beam crossover.

In the case of the microscope, this fact that prediction fails more readily for image sets far
from the crossover is not as catastrophic as it might be. This is because of the ability to
change the magnification of the instrument, and hence affect the overall MTF width. The
use and effect of magnification on the MTF and the autofocus algorithm will be discussed in

section 7.1.

Figures 6.8 and 6.9 contain additional results based on the use of other distance measures. In
particular, the results for Figure 6.8 are for the weighted absolute difference distance measure,
and Figure 6.9 for the normalised weighted squared difference measure that was mentioned
towards the middle of section 6.2.3. This latter plot is shown mostly for interest, since the

distance measure has neither been properly defined nor discussed.

These plots serve to show that the precise details of the distance measure do not play a critical
role in the prediction process. All that is required is that it takes into account the features of
the signals that are being matched. No results could be generated for the unweighted metrics

because of their failure to successfully match the generated ratios to the actual ratios.
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Figure 6.8: Prediction results for the farfocus image series under the weighted absolute
difference distance measure.
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Chapter 6: Algorithm Implementation and Analysis

6.4 Extension to optimised search

The results that were generated in the previous section were obtained by an exhaustive search
through the (d, ka)-space in the vicinity of the known point corresponding to focus. The
process of exhaustively searching is computationally expensive, and it is possible to improve

the speed by means of an intelligent 2-dimensional search.

The success of the search relies on finding a suitable starting point. This is necessitated by
the fact that the search space may contain local minima, as was seen to be the case for the
situation of Figure 6.6. Having verified that the Gaussian approximation results in a search
space which closely resembles that of the experimental cases in the vicinity of the point of
best focus, a possible solution to this problem is presented: if a best-fit Gaussian is fitted
to each ratio, then a closed-form solution to the minimisation problem exists. Equation 5.27
relates the standard deviations of the ratio signals to the distance of the required point in the
search space. Thus knowing d, the k-value of this point can then be calculated by means of

equation 5.30.

Such a 2-dimensional search algorithm was implemented and applied to the problem. The
algorithm used was a modification of the method of steepest-descent, called Praxis[4]. The
results are in most cases very similar to those presented previously in this chapter, with the
search failing in only a few cases where the minimum is not adequately bounded by steep
enough sides in all directions. It was found that approximately 50 to 100 distance function
evaluations were required in each case to find the local minimum given the calculated starting
conditions. The function evaluations are sufficiently fast that the entire search typically takes

considerably less than a second.
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Chapter 7
Further Developments

There are a few additional sections required to clarify the use of the algorithm in a real
situation. The first of these is the dependence of magnification on the image formation. The

extension to astigmatism correction is also discussed.

The chapter begins by again using the Gaussian MTF assumption, this time to analyse
the effects of magnification on the MTF. It is shown that in theory if the magnification is
increased by a factor of two, then the MTF width (in pixels) will increase by the same factor.
Experimental results are then given which demonstrate that even though this prediction is

not entirely accurate in practice, the trend is at least valid.

The extension of the autofocus algorithm to the problem of astigmatism correction is then
presented. The algorithm essentially requires no modification, but the procedure is now

performed in three different planes through the optical axis.

The chapter concludes with a complete outline of the proposed algorithm.

7.1 Effects of magnification

It was mentioned in the previous chapter that changes in magnification can be used to improve

the prediction of the point of focus. This will now be discussed in greater detail.

In the electron microscope the magnification is altered by simply changing the distance be-
tween successive samples of the specimen. Presumably reducing the distance between samples
by a factor of x > 1 will therefore increase the magnification by this same factor. Effectively
this results in the width of the PSF (in pixels) also increasing by the factor z. In the frequency

domain this corresponds to the relative width of the MTF decreasing by this same factor.
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Section 7.1: Effects of magnification

7.1.1 Analysis under Gaussian assumption

In order to assess the effects of magnification on the image formation process, the assumption

of a Gaussian beam profile will once again be used.

Suppose that the PSF at a distance d from the aperture has a standard deviation of opgp(d).
If this standard deviation is directly proportional to the distance from the beam crossover,
then
a
d)=—\|dr—d 7.1
oese(d) = 1y —d (7.1

where a is the standard deviation of the PSF as referred to the aperture plane, and d; is
the beam focal length. Defining dd = d; — d to be the distance of that beam position from
crossover, it can be written that

opsr(0d) = k|5d| (7.2)

with k& a proportionality constant suitably defined. Although the linear dimensions of this
PSF are fixed, the width in pixels depends on the magnification in use. If the magnification is
M pixels/metre and the quantity opsr(dd) is in metres, then the standard deviation in pixels
will be

UPSF(pizels)(Ma M) = kM|éd| (7.3)

Here the dependence on magnification has been included explicitly in the relation.

It should be apparent from equation 7.3 that a change in §d can be counteracted by a particular
change in M. The quantity opsp(pigels) Can be kept constant through changing éd as long as
the product M|éd| is not changed. Thus for distances far from focus where |dd| is large,
the width of the PSF can be kept within a reasonable range by reducing the magnification

accordingly.

This observation can be extended to the MTF in the frequency domain as well. Increasing
the magnification by a factor M will here decrease the width (in pixels) of the MTF by the

same factor.

7.1.2 Experimental results

The accuracy of this previous observation can be analysed by looking at two images taken
at different magnifications, and comparing the corresponding MTFs. The MTFs can be

extracted from the images by the same methods as were used in section 4.3.

Figure 7.1 shows MTFs obtained from images far3 and far 12. Both of these images relate
to a distance of 0.2mm from focus, with the first at a magnification of 500x and the second
at 1000x. According to the theoretical discussion the first MTF should have twice the width
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1.2 : :

Magnification 500x —
Magnification 1000x - - - -
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Figure 7.1: MTFs corresponding to two different magnifications at the same distance from
focus (0.2mm)

of the second. In practice it is found that for this case the actual difference is only 1.551x.

The reason for this discrepancy has not been investigated. It could, however, possibly be
a result of the beam not remaining stationary at the point which is being sampled. This
movement may be introduced by the scanning motion. The contribution to any given pixel is
then a combination of the actual desired value as well as the specimen characteristics in the
close neighbourhood. This factor could cause a deviation from the theoretical case presented
in the previous section. The overall principle does still however apply, namely that in terms
of the MTF width the effect of a change in distance from crossover can be counteracted by a

change in magnification.

In terms of the autofocus procedure, the effect of this deviation from ideal is that images that
were captured at one magnification cannot be modified and reused along with images taken

at a different magnification. In practice this should not present a problem.

Being able to control the width of the MTF without changing the distance can allow the
accuracy of the prediction process to be enhanced. This is done by adjusting the magnification

to result in MTFs that have widths most suited to the focusing procedure.

7.2 Extension to astigmatism

The autofocus procedure that has been presented thus far takes three images, and explicit

information is returned about the distance of the intermediate image from crossover, as well
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Section 7.2: Extension to astigmatism

as the width of this MTF with respect to some template MTF profile. Also implied by this
data is equivalent information regarding the MTFs corresponding to the other two images

involved in the prediction.

It must be noted that this entire procedure operates in a single arbitrarily oriented plane
which passes through the optical axis of the microscope. Thus the data obtained relates
only to the beam as considered within this plane. In the case of the beam being circularly
symmetric it is completely specified by this information, however in general this assumption

cannot be made.

More generally, by considering a number of such planes at different angles through the optical
axis a complete representation of the MTFs can be developed. For every extra orientation
considered, more data can be built up about the actual shape of the MTFs at the position
of the specimen for the three focal lengths. However, if some prior knowledge of the pos-
sible beam shapes is known, then only a small number of such samples may be required to

adequately specify the beam.

In particular, in the presence of astigmatism it is no longer necessary that the PSF be cir-
cularly symmetric. Instead the beam current density profile becomes elliptical, with more
blurring resulting in the direction of the major axis than in that of the minor. For the
Gaussian approximation, this density profile has sometimes been assumed to be that of a
two-dimensional Gaussian, with a specific eccentricity and orientation [7]. The corresponding
MTF in the frequency domain will also be such a Gaussian. There are three independent pa-
rameters to describe this profile, namely an overall width parameter, an eccentricity, and an
orientation. Therefore, under this model the MTF can be completely specified by analysing

the beam in three independent planes, and solving for the unknowns.

It should be possible to avoid the Gaussian restriction by simply forming a more general
expression for the beam width as a function of rotation angle. Good starting points for this

analysis are presented in [31, 1].

Thus the autofocus method that has been presented in previous chapters can be extended
to the astigmatic case by simply repeating the procedure for three different planes. The
information that is thereby obtained is firstly three independent estimates of the distance of
the images from crossover, and secondly the complete MTF representations of the beam at
the corresponding locations. All this can be obtained from just the three images. The MTF

representations can then be used to analyse the astigmatism in the beam, and to correct it.

Most autofocus algorithms which rely on searching for extrema in a criterion function can at
best only optimise the focus or the astigmatism at any one time. For this reason they are
forced to iterate repeatedly through cycles of alternately correcting the astigmatism and the

focus [7]. For the method proposed here the beam is considered in its entirety, and no such
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co-dependence exists. It is therefore possible to change both of these factors in the same pass.

7.3 Proposed autofocus algorithm

An implementation of the overall technique developed in this thesis has not been attempted.
It was found that the available software for the microscope did not lend itself to easy in-
terfacing to such an algorithm. The discussions do, however, lead towards a fairly natural

implementation, the rough details of which will be discussed here.

It must be emphasised that without physically trying such an implementation it is extremely
difficult to anticipate the areas where problems might occur. Also, numerically quantifying
some of the factors is impossible. When putting the algorithm into practice, the particulars of
the implementation would have to be arrived at experimentally. The following stages comprise

the outline:

e Capture a single image and transform a portion of it. If there is enough high frequency
content in this transformed sample, then the chances of success of the prediction is
good, and the image can be used. If there is not sufficient high-frequency detail, then

reduce the magnification until there is.

e Capture the remaining two images needed for the prediction. The amount to change the
focal length from that of the first position would have to be found by some means. A
possible solution to this problem would be to grab an image at some arbitrary distance
and to form the MTF ratio. Once this is available, it can be decided if the ratio falls
within a width range that is deemed suitable. If not, the distance can be adjusted and
the process repeated. If so, the final image can just be taken the same distance from

the first, but in the opposite direction.

e Once the images are captured, they can be tiled, transformed and averaged, as described
earlier. The two ratios can then be formed. In order to take into account possible astig-
matism, three 1-dimensional representations of these ratios can be formed at varying

angles by means of the radial averaging procedure outlined.

e The autofocus procedure can then be applied to each of these cases independently. This
will give three independent estimates of the position of the beam crossover in the case
of a non-astigmatic beam. For an astigmatic beam the average of three should be a
suitable estimate until such a time as it is corrected for. Additionally, a reasonable
model of the beam can be created from the now known MTFs at the locations of the

images. This can be used to correct for the astigmatism.
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e After making corrections to the focal length and astigmatism, it is assumed that the
instrument is now closer to best focus and zero astigmatism. The magnification can
therefore be increased and the process repeated until the desired degree of accuracy is
achieved. Furthermore, as successive iterations are undertaken, a progressively more
in-depth model of the beam can be built-up, which can be used to intelligently refine

the subsequent searches.

It is anticipated that the bulk of the time spent in this loop will be during the image capture.
At least three images have to be captured for every iteration. A huge speed difference could
be gained if, instead of capturing three complete images, line samples are made at the focal
lengths and orientations desired. Effectively, to reproduce the situation that was obtained
above, 9 line samples are required, three for each angle around the optical axis. The noise

distributions will however differ for this case from the one presented in the algorithm.
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Chapter 8

Conclusions

The findings of this thesis will now be summarised and the important conclusions highlighted.

The most significant result that came out of the entire investigation is the fact that it was
possible in this case to generalise a commonly used model. The usual assumption of a Gaussian
MTF was shown to be a special case of a model based on a more fundamental property
of imaging systems, namely that of a self-similar PSF which varies linearly in size with
the distance from focus. Methods were then developed for working with this new model,
which although perhaps not as neat as for the Gaussian counterpart, had virtually the same
flexibility. Furthermore, it was shown that this model had relevance to practical applications:
An autofocus algorithm was developed on top of it, and the results obtained were fairly
acceptable. It should be noted that having the closed-form Gaussian model solutions to the

problems in question was particularly useful in performing this generalisation.

Also of particular interest was the noise analysis that was made on the ratio data. It was
demonstrated that in this situation the commonly used methods of noise reduction would
fail because of the unusual probability distribution. Various estimators for the location of
the distribution had to be considered, and their characteristics analysed with regard to how
successful they would be as estimators of the desired noise-free ratio. Here again a number

of alternative methods had to be built up and optimised to suit the particular situation.

With regard to the autofocus algorithm that was proposed, this could be improved upon.
The idea of forming an MTF ratio is a very powerful one, given that the problem of noise
can be circumvented. Also, the use of a general imaging model in analysing this ratio is very
effective; the usefulness of a model that can be used unaltered across all operating conditions
cannot be disputed. The place where the proposed procedure falls short is possibly in the
definition of the distance measure used in comparing two given ratios. This is a stage which

in the development drew heavily on heuristics to make the match appear visually optimal,
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but no justification was given that this is indeed the case. The problem can be seen in
the search spaces under the modified distance measures: whereas in the metric measures
the global minimum is steeply bounded and therefore accurately and easily found, for the
modified cases this accuracy is compromised. The distortion of the search space to contain
multiple global minima is also a compromise that should be addressed. There is naturally a
heavy bias towards the use of commonly encountered metrics or distance measures (such as

squared difference), where less known but more applicable measures might be more suitable.
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Appendix A

Test Images

A.1 TImage series: farfocus

Two sets of nine non-astigmatic images were taken of the silver crystal specimen at magnifica-
tions of 500x and 1000x. The first image in each set was taken at best focus, using a working
distance of approximately 15mm. Subsequent images were then taken progressively further
from best focus, corresponding to a greater degree of out-of-focus. The most out-of-focus

image taken was at a distance of 1.2mm from best focus.

The microscope operating conditions were as follows:

e Operating voltage: 15kV
e Beam current: 100pA

e Aperture size: 30um

Noise reduction in the form of frame averaging was employed, with a complete image acqui-

sition time of about 4.8s. The size of each image was 1024 x 768 pixels.

The astigmatism was manually corrected, and the first image was taken at best focus as
determined by eye. The focal length as reported by the microscope was then recorded. Eight
images were then taken at progressively greater distances from this position of best focus,
and the corresponding focal lengths recorded. At no point was the direction in which the
focus was changed reversed. Tables A.1 and A.2 give the reported focal lengths used for the

images in each set.

Figure A.1 shows the centre 384 x 384 pixels of the in-focus image.
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Image Name | Focal length | Dist from focus
(mm) (mm)

farl 14.95685428 0

far2 14.85710125 0.09975303
far3 14.75734729 0.19950699
far4 14.46030289 0.49655139
farb 14.36056383 0.59629045
far6 14.26082011 0.69603417
far7 13.96385673 0.99299755
far8 13.86412513 1.09272915
far9 13.76440191 1.19245238

Table A.1: Reported focal lengths for farfocus image series (500x magnification)

Image Name | Focal length | Dist from focus
(mm) (mm)

far10 15.04981611 0

farll 14.95005935 0.09975676
far12 14.85030819 0.19950792
far1l3 14.55324236 0.49657375
farl4 14.45349958 0.59631653
farlb 14.35375866 0.69605745
far1l6 14.05677479 0.99304132
farl7 13.95704225 1.09277386
farl8 13.8573125 1.19250361

Table A.2: Reported focal lengths for farfocus image series (1000x magnification)
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Figure A.1: Centre 384 x 384 pixels of image farl from image series farfocus
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Appendix B

Additional Results

B.1 Scale in the Fourier transform domain

Given an image in the continuous spatial domain, the scale in the Fourier transform domain
is unambiguously defined. However, for a sampled image, the sampling frequency needs to

be known for this to be the case.

If the continuous space image is sampled such that one pixel represents m metres, then the
entire image of N x N pixels represents a square of side Nm metres. For k = 0 to (N —1), the
transform coeflicient k£ then determines the number of cycles in Nm metres. This identifies

frequency f as

k
'=~m

Thus in the frequency domain a single frequency interval (one pixel) corresponds to

m1] (B.1)

—— [m™] (B.2)
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Appendix C

Random Variables

C.1 Ratio of zero-mean normal random variables has no mean

The mean of a distribution is given by
[e.e]
E{z} = / zp,(2)dz (C.1)
— 00
which can be split into the two integrals

E{z} = Ei{z}+ Ex{z}
00 0
= / sz(Z)dZ—l—/ zp,(z)dz (C.2)
0 —o0

Considering just the first of these integrals, for the Cauchy distribution we have that

Bz = [ e

1 f° z
= — —d C.3
s /0 2417 (C3)
which can easily be shown to evaluate to
1 2 [ed)
Bi{s} = o-[n(z*+ 1R (C.4)
]. . 2

This limit does not exist, and hence the integral does not converge. This is sufficient to prove
that the mean E{z} does not exist. In a similar manner it can be shown that the second

central moment (or the standard deviation) of the distribution is infinite.

107



Because the integrand z/(z% + 1) is an odd function of z, the integral

/ Y _E g (C.6)

R T |
does however have a principal value of zero, since

n
lim [ —o—dz=0 (C.7)
=00 J_p 2%+ 1

C.2 Ratio of nonzero-mean normal random variables has no

mean

In section C.1 it was shown that

/ > { 1 1 } dz (C.8)
zZ4— Z — 00 :
0 2241
Thus, using equation 3.11, and equation 3.6 with z{; = 0 and y; = 0, it must be the case that
o oo
/ z {k/ |p|e%p2z2e%p2dp} dz — (C.9)
0 —00

or rewriting in a more immediate form
00 oo _l2.2 1.2
k/ / z|ple” 2P * e 2P dpdz — oo (C.10)
0 —00
Consider now finding the mean M of the general distribution in equation 3.6 by forming the

integral
00 o0 _1 222 1,2 2z’ ’
M:k/ / z|ple 2P * e 2P eP*oePYodpdz (C.11)
0 —00

This can be split into the two components

M = M+ M,
00 oo 12,2 1.2 o0 /
= k/ / z|ple” 2P e 2P eP*PoePYodpdz
o Jo

oo r0 _1p2,2 109 o0
—I—k/ / z|ple 2P % e 2P eP*oePYodpdz (C.12)
0 —00

Taking just the term M;, within the integration limits the conditions exist that p > 0 and

z > 0. If 2, and y(, are now restricted to be positive numbers, then

eP# ol > 1 (C.13)
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Appendix C: Random Variables

and
1,2

z|p|e*%1”2226*%1"261"”667”‘”6 > z|p\e*%p2z2e*5p (C.14)
for all regions over which the integral is performed. Since by equation C.10 the integral of
the right hand side tends to infinity, the integral of the left hand side over the same limits

will also diverge.

It has therefore been shown that M; does not converge, which is sufficient to prove that the
mean M does not exist. Thus the mean of the ratio of two nonzero-mean normal random

variables does not exist.
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Appendix D

Integration Results

This appendix describes the derivation for the closed-form solution of the probability distri-

bution pz(z) used in section 3.3.1.

The required integral was given by
o0 (1 2,1\ 2 o 1 __1_ 1.4
pz(2) :K/ lple= (35 +2)P" ~2(=3220=3%)P gp (D.1)
— 00
Defining u(z) and v(z) as per equation 3.9, this can be written
o0 c
pz(z) = K/ |p|e P —2v(2)p gy,
—0o0
e i2)p? =2u(2)p ° —n(2)p*—2v(2)p
= K/O pe dp—I—K/ —pe dp
—0o0
o0 (e e]
_ K /0 pe MA@ g K /0 pe MR 2 (E)p gy, (D.2)

where this second term is obtained by a change in the sign of the variable to be integrated

over. This allows for the expression to be simplified as
o0 2
prle) = K [ pertOn (@ 4 2Omgp
—0oQ
= ZK/ pe HEIP® cosh(2v(z)p)dp (D.3)
—0o0

The result then follows from tables of integrals [12, p.365] that

B viz) [ e"M(ZZ)Z v(z) 1
pZ(z)‘2K{u<z> ne) ”‘I’< u(Z)>+2u(Z)} (B4
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Appendix E

Diffraction as a Fourier Transform

It is possible, under some restrictions, to view diffraction as a Fourier transform operation.

Suppose the optical disturbance in a given plane 1 is known, and is given by (e, n, z). If
the origin of the coordinate system is chosen to lie in this plane, then this disturbance and
be written 1 (e,n,0), or just 11(g,n). It is assumed that 1)1 (e,n) is defined over some region

of support R in the plane, which usually represents the physical aperture.

The resulting effect at a general point (z,y, z) is then given by [35]

etkr(e,nx)
z,Y,z //'Lpl an 77)’ ) ( £,1,X )dgd’ﬂ (El)

In this equation, r(e,n,x) represents the length of the line segment from (g,7,0) to (z,y, 2).
x(€,m,x) is an inclination factor which depends on the angle between this line and the normal

to plane 1. k is the usually defined wave number.

If the observation points are restricted to lie in a second plane 2 a distance z from plane 1,

¥(x,y, z) can be written as 12(z,y) and equation E.1 becomes

ikr(g,m,x)

e
= — E.2
Po(x,y) //Rl/h (e,n)x(e,n,x) ) dedn (E.2)
The distance r is given by the expression
r(e,m,x) = /(@ — )2 + (y — )2 + 22 (E.3)

which in a different form is

r(e,n,x):,Z\/(x;e)Qik(y;n)2+1 (E.4)




Under conditions of large z, the binomial approximation /1 + a =~ 1 + /2 can be used on

equation E.4 to give
(z —¢)*
222

L w=n)’ (E.5)

~z|1

This previous approximation is used in the exponential term in equation E.2, which is a
dominant term since k is a large number. For the denominator term the cruder approximation
r = z is made. Furthermore, the term x/(e,7,x) is assumed to be constant, and approximately
equal to x. The validity of these assumptions is confirmed in [35]. The resulting expression

after using these approximations is

ikz )
bale,) = X [ [ ilemyedt om0 ey (E.6)

With some manipulation this can be written in the form
xe'
z

Iczi

g2 (' 19") / / Pi(e, 77)6%(524'"2)67%(“4'””50377 (E.7)
R

¢2($,y) =

Defining an aperture function

M = g ©s
and from this a modified aperture function
Ymoa(e,m) = 11 (e,m) Ale, m)e3 <1 (E.9)
the equation E.7 can be written
V(o) =00 [~ [ moales e £ E0dedy (E.10)
o000
where C(x) is
C(x) = X gikz o 52 (22 +y?) (E.11)

z

The form of this last equation for 1, (z,y) can be seen to resemble that of a Fourier transform,

kx ky

with respect to frequencies (%F, “Y). If the symbol F; represents the Fourier transform with

the frequencies scaled by a factor f, then

P2(2,y) = C(X)Fs [¥moa(€; )] (E.12)

Using this form of the equation, diffraction under the conditions presented here can be rep-

resented and calculated as a modified Fourier transform operation.
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Appendix E: Diffraction as a Fourier Transform

E.1 PSF with aberrations

The theory of aberrations is usually discussed in terms of wavefronts. Equations for the
various aberrations then represent the position of an actual wavefront with respect to a

reference sphere centred on the Gaussian image point. Consider Figure E.1: W is a wavefront

|
I

Gaussian

image point P

Wavefront W

Figure E.1: Actual wavefront corresponding to ideal image point

in space which is roughly convergent on a Gaussian image point P, which is the image of a
perfect point source transmitted through the imaging system. In the absence of aberrations
the wavefront would be exactly circular and centred on P, and the image would also be a
perfect point. However, if aberrations are introduced, the situation deviates from the ideal
and this wavefront is distorted. An aberration function ® will be defined to be the distance
in the direction of wavefront propagation by which the actual position of the wavefront differs

from this circular ideal.

For this purpose, a reference sphere G is defined which is centred on this image point P and
passes through the centre of the aperture. P is assumed to be a distance z from the aperture.
The situation is depicted in Figure E.2. ®(g,n) will be defined to be positive if the actual

wavefront lies behind the reference sphere.

The primary aberrations can now be completely specified using this aberration function.

These aberrations are [3]:
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®(e,n)

— Actual wavefront W

Reference sphere G

|
I

\ Gaussian

image point P

Figure E.2: Image formation in terms of wavefronts

Spherical aberration ® = —Kp*

Coma ® = K.p? cos(6)

Astigmatism ® = — K, p? cos?(6)

Curvature of field ® = —Kp?

Distortion ® = Kp cos(0)

where p = /€2 + 7?2 and 6 is the angle of the point of interest in the (e,7)-plane. Since
these equations represent the aberrations on a point source being imaged by the system, the
image resulting from the wavefront will be the PSF of the system in the presence of these
aberrations. It will now be shown how the functions here can be used to calculate the PSF

of the system.

In the previous section it was shown how the Fourier transform can be applied to a modified
aperture function to find the resulting diffraction pattern at any point far from the aperture.
What then had to be known was the disturbance function 1)1 (¢, 7) in the plane of the aperture.
To present aberrations in terms of this previous discussion, it is necessary to find this distur-
bance function given the location of a wavefront. This can be done if the following is noted;
moving from the wavefront to the reference sphere represents a phase shift of k®, and then
back to the (g,n)-plane a shift in the opposite direction of kg, where ¢ is the distance from

the reference sphere to the aperture plane. The combined phase shift can thus be represented
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Appendix E: Diffraction as a Fourier Transform

by multiplication by a term

eh(®=q) (E.13)
where ¢ can easily be verified to be
L o2, 2
q=-("+n) (E.14)
2z

Thus if the magnitude of the disturbance on the wavefront is M, the aperture disturbance

function can be written as

ik

(e, ) = Mek®Em =3 (247 (E.15)

Since incoherent imaging is being considered, the system PSF is given by |2 (z, )|
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