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Abstract 
Image registration enables the geometric alignment of two images and is widely used 

in various applications in the fields of remote sensing, medical imaging and computer 

vision. This thesis explores each of the stages, and looks at two applications of image 

registration. The applications investigated are mosaicing and independent motion 

detection.  

 

Mosaicing is the aligning of several images into a single composition that represents 

part of a 3D scene. This is useful for many different applications, including virtual 

reality environments and movie special effects.  

 

Motion detection often assumes a static background onto which moving objects 

provide a dynamic foreground. A challenging problem is presented when the camera 

is also moving. A differentiation needs to be made between the apparent movement of 

the background (caused by the motion of the camera) and independently moving 

objects in the scene. We compensate for the apparent movement of the background by 

registering or aligning the images. Following this, we use frame-differencing, 

thresholding, and morphological operations to segment independently moving objects 

in the scene. We do not set out to achieve real-time motion detection, but rather 

present a means for the detection of independent motion.  

 

The images we consider in this thesis are views of a scene taken by a rotating camera 

and are registered by means of a planar homography. The advantage of our approach 

to the two applications is that it is fully automated, robust and uses only information 

provided within the images. Mosaicing results show that provided there is sufficient 

overlap between images, mosaicing can be achieved with no user intervention. Lastly, 

it is shown that despite the apparent movement of the background it is indeed possible 

to detect independently moving objects using our approach. 
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Chapter 1 
 

Introduction 
 

“If we knew what it was we were doing, it would not be called research, would it?” 

- Albert Einstein (1879 - 1955) 

 

This thesis looks at the stages of image registration. It also considers the problems of 

creating image mosaics and the detection of independent motion as viewed by a non-

stationary camera. The chapter starts with an overview of the research and 

application areas that provide inspiration to this work. Some selected work is briefly 

described, as relevant related work will be referred to within the individual chapters 

of this thesis.  

 

1.1 Motivation and scope 
Vision allows us humans to observe and be aware of our surrounding world. 

Computer vision, as the name suggests, aims to duplicate human vision by 

electronically manipulating and interpreting images. Whilst images do provide us 

with lots of useful information, extracting this information is not a single problem but 

rather a vast number of them, each individually complicated. As such, computer 

vision has been evolving as a multi-disciplinary subject over the years focusing on the 

extraction, representation and use of visual information in artificial intelligence, 

robotics, medical image analysis, surveillance systems, and other applications.  

 

Further, images not only contain scene shape, structure and colour information, but 

also the possible motion of the camera and objects in the scene. It is precisely this 

information that we manipulate in this thesis. Active vision allows for camera motion 

and thus improves the retrieval of information relevant to a particular task. For 

instance, in surveillance systems, active tracking can be used to keep an object of 

interest in sight, or better yet, keep it centred in a video sequence.  
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When multiple images are captured from different viewpoints (or at different times) 

the images become distorted with respect to each other. Image registration or 

alignment1 is the process of determining the optimal transformation matrix that results 

in the images being in spatial alignment [16]. The registration of images is used in a 

variety of applications and it is no surprise that research in the area of image 

registration has followed many avenues towards determining this optimal 

transformation matrix. Excellent reviews of image registration are given in [4] and 

[58]. The reader is encouraged to look at these for an in-depth look at the different 

methods used in the registration of images. 

 

This thesis considers each stage of image registration in depth and then looks at two 

application areas, namely the creation of mosaics and the detection of independent 

motion. The objectives of our research can be summarised as to: 

• Review existing literature on image registration and tackle each of the stages 

involved in this process. 

• Use image registration to create mosaics of scenes containing moving objects. 

• Combine image registration and temporal differencing to achieve independent 

motion detection. 

• Test the selected method of mosaicing and motion detection on images of real 

scenes. 

• Finally, draw conclusions and make recommendations for future research 

directions. 

 

1.2 Related work  
Algorithms that allow images to be aligned and seamlessly stitched together are 

among the oldest and most widely used in computer vision [48]. One of the 

applications of image registration is in the medical field: [28] offers a comprehensive 

survey. In medical image analysis, image registration is used for applications ranging 

from tumour detection to those dealing with the integration of structural information 

from computed tomography (CT) or magnetic resonance (MR), with functional 

information from scanners such as Position Emission Tomography (PET) [4]. In the 

                                                 
1 The terms registration and alignment will be used synonymously throughout this thesis.  
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field of remote sensing, image registration can be used for interpreting changes in 

scenes captured at different times, for instance in urban growth monitoring [9] or 

surveillance of nuclear plants. Other applications in the field of remote sensing 

include the location of positions and orientations of well known features such as 

parking lots, airport runways, etc. More information on the applications of image 

registration in the field remote sensing can be found in [4]. One last useful application 

is that of the creation of panoramic mosaics. Several approaches are presented in 

literature to construct full view panoramas by taking several video images in order to 

cover the whole viewing space and then stitch the images together. The reader is 

encouraged review work done by Szeliski (see credits). Other work related to this 

thesis includes [1, 7, 8, 11, 14, 17, 23 and 32]. 

 

1.3 Thesis structure 

The rest of this thesis is organised as follows: firstly an introduction to projective 

geometry is given (Chapter 2) after which the feature detection and feature matching 

stages of the image registration are then explained. Here, a general overview of the 

stages and related literature is given before the exact methods that were used are 

described (Chapter 3). A background description of the estimation of the transform 

used in this research is given and the robust estimator that is used to estimate it 

described. The method used to align pairs of images is also presented (Chapter 4). 

Two applications of image registration are investigated; image mosaicing (Chapter 5) 

and motion detection (Chapter 6). Conclusions based on the research are drawn and 

directions for future research given at the end of the thesis (Chapter 7). 

 



 4 

Chapter 2 
 

Projective Geometry 
“Copy from one, it’s plagiarism; copy from two, it’s research.” 

- Wilson Mizner (1876 - 1933) 

 

This chapter reviews some of the basic notations and properties of projective 

geometry. Projective geometry is the natural mathematical framework used to 

describe the projection of a scene onto an image. The background presented here is 

therefore useful for understanding subsequent chapters. 

 

2.1 Perspective camera model 
The most commonly used geometric model of a camera in computer vision is the pin-

hole camera. This model consists of a plane R , called the retinal or image plane, and a 

3D point O  called the center of projection or the optical center. The straight line 

through the optical center and perpendicular to the image plane is called the optical 

axis and the distance between the plane R and the optical centre, the focal length. The 

camera reference frame has its origin at the optical centre and the optical axis as its z-

axis. This discussion is illustrated in figure 2.1. 

 
Figure 2.1: The perspective Camera Model 
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Let ( )vu,  be the 2D coordinates of the point m and ( )zyx ,, the 3D coordinates of M.  

The fundamental equations of the perspective projection of M in the point m of the 

image plane are: 

                                                   
z
x

fu =              
z
y

fv =                                         (2.1) 

Equation 2.1 is a non-linear relation but can be expressed in homogenous coordinates 

and expressed linearly as: 
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where P is the perspective projection matrix. 

 

2.2 Camera parameters 
Often, the camera reference frame is unknown and the location and orientation of the 

camera frame with respect to a known reference frame needs to be determined using 

image information only. In practice the image coordinate system is represented by a 

pixel grid (not mm) and the origin is not the principal point but one of the image 

corners. Also, the horizontal and vertical distance between pixels is not necessarily 

the same. To deal with these issues, an operation known as camera calibration is 

performed. This operation involves estimating two sets of camera parameters known 

as extrinsic and intrinsic parameters. Extrinsic parameters define the location and 

orientation of the camera reference frame with respect to a known reference frame. A 

typical choice for describing the transformation between the camera and world frame 

is to use a 3D translational vector T describing the relative positions of the two 

frames, and a rotational matrix R that brings the corresponding axes of the two frames 

onto each other. The relation between the coordinates of the point M in world and 

camera frame, Mw and Mc respectively, is: 

                                                     Mc = R(Mw –T)                                                          (2.3) 
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Intrinsic parameters are the parameters necessary to link the pixel coordinates of an 

image point with the corresponding coordinates in the camera frame and characterize 

the optical, geometric and digital characteristics of the viewing camera. They specify, 

respectively; the perspective projection (i.e. the focal length), the transformation 

between the camera frame coordinates (mm) and pixel coordinates, the geometric 

distortion introduced by optics. Neglecting geometric distortions, the transformation 

between camera and image frame coordinates is given by: 

                          ( )xim oxx −−= xs                ( )yim oyy −−= ys                               (2.4) 

where ( )yx oo ,  are the coordinates of the pixel of the image center O  (the centre of 

projection), and ( )yx ss ,  is the effective size of the pixel (in mm) in the horizontal and 

vertical direction respectively. Putting equations 2.3 and 2.4 into equation 2.1, and 

neglecting radial distortion, two matrices for the cameras intrinsic and extrinsic 

parameters may be defined as: 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

−

=

100

0

0

int y
y

x
x

os
f

os
f

M  

and 

                                             extM  = [R;T]  

where [R;T] represents a 43 × matrix with the first three columns occupied by R and 

the fourth by the vector T. 

 

2.3 Planar transformations 
A linear transformation of a projective space is defined by a non-

singular ( ) ( )11 +×+ nn  matrix A. This transformation is known as a collineation or a 

projective transformation. The matrix A performs an invertible mapping of onto itself 

and is defined up to a non-zero scale factor. For 2D projective transformations we 

have what is known as the projective plane and two different views of the same planar 

scene in 3D space are related by a collineation which is also known as homography, 

the term we adopt in the rest of this thesis. 
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A 2D projective transformation is a linear transformation on homogeneous 3-vectors 

represented by a non-singular 33×  homography matrix H: 
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In equation 2.5, ( )321 ,, xxx  and ( )321 ,, xxx ′′′  are the homogeneous vector 

representations of two points, and H is the matrix defining the linear mapping of 

homogeneous coordinates. The matrix H may also be multiplied by any arbitrary non-

zero scaling factor without altering the projective transformation. The matrix H has 

eight degrees of freedom, being defined up to a scale factor. Two images taking by a 

moving camera are related by a homography if the scene is planar or if the point of 

view of the camera does not change (the camera is rotating around its optical axis). 

Table 2.1 shows the hierarchy of homographies. 

 

Table 2.1: Models used to describe a planar transformation. 
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Most general planar 
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Notably, a general projective transformation takes into account translation, rotation, 

scaling, shear, and perspective deformation. When dealing with a 3D scene and 

arbitrary camera motion, the relationship between two views can be defined in terms 

of a homography plus a parallax term depending on the scene structure and camera 

translation. However if the depth range of the scene is small compared to the distance 

from the camera, or the translation is small, then the parallax term can be neglected 

[12].  

 

2.4 Conclusions 
This chapter was devoted to a summary of the mathematical framework describing the 

projection of a scene onto an image. The perspective camera model, which is widely 

used in computer vision applications, was described. Following this, the cameras 

external and internal parameters were discussed. The process of finding the camera 

parameters, camera calibration, was not described as it fell beyond the scope of our 

research. However, for applications such as 3D reconstruction and motion tracking, 

camera calibration is essential. Finally, the basic properties of 2D projective 

transformations were explained. Further details on the computation of the 

homography will be discussed in subsequent chapters. 
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Chapter 3 
 

Feature Detection and Matching 
 “It is impossible to begin to learn that which one thinks one already knows.” 

- Epictetus (c.55 - c.135)  

 
This chapter is devoted to the first two stages of image registration, namely feature 

detection and matching. The material presented here is not new and a plethora of 

literature on the subject exists. For more details on these topics the reader is referred 

to [4]. The chapter is organized as follows: Section 3.1 gives an introduction and 

describes the various types of features that can be used for our application. The 

features that are used in this thesis are corners. A review of corner detection and a 

description of the method we use are presented in section 3.2. The matching 

procedure is described in section 3.3 and the results of both the detection and 

matching shown in section 3.4. The chapter concludes with a discussion in section 

3.5. 

 

3.1 Introduction 
The feature detection and feature matching stages of image registration can be divided 

into two approaches, namely area-based and feature-based. Area-based methods of 

feature detection put emphasis on the matching of the features themselves rather than 

on their detection. These methods are not considered here; instead we focus on 

feature-based methods.  

 

Feature-based methods do not work directly with image intensity. Therefore when 

illumination changes are expected, as is the case with the real scenes being dealt with 

in this research, the fact that features represent information on a higher level 

motivates their use. The use of feature-based methods is also recommended if the 

images contain sufficiently many detectable and distinct objects, as is the case with 

most computer vision applications. They are several features that may be used for 
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detection and matching, and certain criteria are used to justify the type of feature 

chosen. These criteria are that the features should be unique, able to be detected 

without difficulty, and have a good spatial distribution over the images. Some of the 

features that may be used in the registration of images, taken from [58], follow. 

 

One type of feature that may be used is a closed-boundary region. Examples include 

buildings, forests, and fields or lakes due to their significant size in remotely sensed 

images. Regions are also used because their centres of gravity are invariant with 

respect to rotation, scaling and skewing, and are stable under conditions such as noise 

and grey level variations. However, region features are detected by means of 

segmentation methods, the accuracy of which significantly influences the resulting 

registration [34]. Line features such as representations of general line segments or 

object contours may also be used. Often the line correspondences are expressed by 

pairs of line ends or middle points [58]. Standard edge detection methods are used for 

line feature detection, and these include the Canny edge detector and the Laplacian of 

Gaussian (LoG) based detector. The reader is pointed to [57] where an extensive 

overview of edge detection techniques is given. 

 

The last group of feature we consider are point features. This group of features 

includes methods using line intersections, high variance points, maximally distinct 

points with respect to a specified measure of similarity, and corners. With regard to 

feature detection, in most instances the core algorithms follow the definition of a point 

as a line intersection or as the centroid of a closed-boundary region. It has been found 

that corners form their own class of feature as the property of being a corner is hard to 

define mathematically.  

 

3.2 Corner detection 

As mentioned in the previous section, there are several types of features available for 

detection in images. Primarily, the choice of which feature is to be used is dependent 

on the application being undertaken. Corners, with their two-dimensional structure 

providing information about image motion, are well suited to the moving scenes being 

considered in this research. The choice of corners for feature detection is further 

motivated by the fact that they are stable, not only to small changes in viewing 
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directions but also to illumination changes. Also, corners are not affected by the 

aperture problem inherent when computing optical flow. 

 

A review of some of the different methods of corner detection is now given, after 

which the corner detector used in this research is described and reasons for its choice 

given. 

 

3.2.1 Review of corner detectors 
Early approaches to corner detection involve segmenting images into regions, 

extracting boundaries as chain codes, and then identifying corners as points where 

directions change rapidly [38]. Such approaches have largely been done away with 

due to their dependence on the initial segmentation step. More recent corner detectors 

can be categorized in two groups that differ in the way “cornerness” is defined. We 

have curvature-based detectors, as well as feature-based detectors.  

 

The curvature-based corner detectors exploit the definition of a corner as a point 

where the edge contour curvature is high. Kitchen and Rosenfeld [25] employ a local 

quadratic surface to find the magnitude of the gradient and the rate of change of the 

gradient direction. The resulting product of these two quantities is determined and the 

point of local maximum locates the corners. Baudet [3] improves high-curvature 

edges by looking for saddle points in the image brightness surface, and then calculates 

the image Gaussian curvature based on the product of the two principle curvatures. 

The Baudet operator, known as the DET, is derived from the second-order Taylor 

expansion of the intensity function ( )yxI , : 

                                                      2
xyyyxx IIIDET −= ,                                            (3.1)  

where xxI , yyI  and xyI  are the second order partial derivatives of  ( )yxI , . The corner 

detection is based on the thresholding of the maximum of this cornerness measure. 

 

At the forefront of the curvature-based methods is the Wang and Brady corner 

detector [53]. Here the stability of the detected corners is improved by suppressing 

false corners that are wrongly reported on strong edges. The original image is 

convolved with a Gaussian filter (�=0.5 pixels) to reduce the effect of noise and 
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quantization, before computing the total image surface area. It is shown that for points 

with a strong gradient, the total curvature � can be approximated by 

                                            S
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where F is the grey-level image after Gaussian convolution and δ2F/δt2 is a directional 

derivative along the direction perpendicular to the image gradient n. The term 
2

FS ∇  

is the edge strength, which responds well at the edge pixels. 

 

 A modified corner detector is proposed in [53] which looks for where the curvature � 

is high and where a local maximum is found in the inequality given in equation 3.3. 

The Wang and Brady detector is therefore defined as: 

                                        MaximumFS
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where S is a constant measure of the image surface curvature (varying with different 

Gaussian masks), F is the intensity image after Gaussian smoothing, and T1 and T2 are 

user-defined thresholds on edge and corner strengths. In cluttered environments, 

however, the false corner suppression is not sufficient to prevent false responses on 

strong diagonal edges. This group of detectors is sensitive to noise as the measure of 

“cornerness” relies on the second order derivatives.  

 

Feature point based detectors use the intuitive definition of a corner as points that are 

well-distinguished from neighbouring points, or where the local autocorrelation of the 

image intensity is high. Paler et al. [35] show that, at a corner, the median of the local 

brightness values taken over a small mask is significantly different from the centre 
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value. A corner response is produced using the difference between the median and 

centre value of the mask. The approach is restricted to images where the edge widths 

and the contrast between the object and background can be estimated accurately.  

 

Smith and Brady [45] introduce the SUSAN corner detector for low-level image 

processing, and use a principle similar to that of Paler et al. Their method considers an 

arbitrary pixel in an image and a corresponding circular pixel mask around it, the 

centre of which is called the nucleus. Provided that the image is not textured, there 

exists a compact region within the pixel mask whose pixels have similar intensities to 

the nucleus. The area is called the USAN (Univalue Segment Assimilating Nucleus), 

and by observing how the position of the centre of gravity of the USAN varies from 

the nucleus, a principle is derived to locate corners. Some of the representative shapes 

of the USAN are shown in Figure 3.1. No assumption is made about the form of the 

local image structure around any well-localised point, nor are points of interest 

sought. As such the SUSAN detector is fast and able to handle all types of junctions. 

 

 
 

Figure 3.1: Representative Shapes of USAN. (A) the nucleus is within the USAN; 
(B) the nucleus is an edge point; (C) the nucleus is a corner point. 

 

The Moravec corner detector [29] defines corners as points where there is a large 

intensity variation in every direction. The principle consists of computing an un-

normalised local autocorrelation in four directions and taking the lowest results as the 

intermediate response. The final response is obtained after performing thresholding 

and local non-maximal suppression. As only four directions are used in finding the 
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local autocorrelation, the Moravec detector is sensitive to strong edges under certain 

directions. Harris and Stephens [18] use a similar technique to that of Moravec but 

estimate the local correlation measurements from first order derivatives. This is the 

detector used in this research and is the focus of the next section. 

 

3.2.2 Corner detection using the Harris Corner Detector 

To be useful for the later feature matching stage, a corner detector needs to satisfy the 

following criteria of robustness: 

• Consistency of detection - The corner detector should detect even very subtle 

corners, while being insensitive to the variation of noise, 

• Localisation - The corners should be detected as close as possible to their 

correct locations, 

• Stability - The detected positions of corners should not move when multiple 

images of the same scene are acquired possibly from different viewpoints, and 

• Complexity - For real-time tasks the corner detection needs to be fast, so a 

low algorithm complexity is required. 

The Harris and Stephens corner detector is a widely used corner detector and is used 

in view of the above-mentioned criteria. Consider a local window in the image. Harris 

and Stephens determine the average variation in intensity that results from shifting the 

window by a small amount in different directions. Letting I  denote the image 

intensities and W  specify the current image window, the change E  produced by a 

shift ( )yx,  is given by 

                          [ ]� −++=
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xI  and yI  are the first order derivatives of the intensity function in the x  and y  

directions respectively, ),( 22 yxO  represents higher order properties, and W  is 

defined as the Gaussian function for a smooth circular window. Denote the 
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eigenvalues of the matrix M as � and �. Since the matrix M describes the shape of the 

local autocorrelation function at the origin of the shift, � and � are proportional to the 

principal curvatures and form a rotational invariant description of M. Therefore, when 

both � and � are larger than some threshold values, the shifts in any direction lead to a 

significant change in E  and a corner is flagged. The cornerness measure ( )MCS  is 

defined using the trace ( )MTr  and the determinant ( )MDet  as: 

( ) ( ) ( )MkTrMDetMCS
2−=  

where                                        (3.10) 

( )21 t
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k
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=   and  t

t
<<

β
α1

 

The constant k  varies with different masks and different Gaussian convolution. As it 

is commonly used, the detection process used in this research may be summarised as 

consisting of the following stages: 

• The calculation of the image gradients xI   and yI  

• Convolution of the image gradients xI   and yI , and their product, yx II  with a 

smooth circular Gaussian convolution mask 

• Calculation of the corner responses from the smoothed gradients, and 

• Thresholding the corner responses and applying a non-maximum suppression 

process to eliminate multiple candidates for a corner point 

The results of using this corner detector are shown and discussed at the end of this 

chapter.  

 

3.3 Corner matching 

Once the two sets of corner features in the images have been detected, the aim is to 

match the corresponding features using spatial relations or various descriptions of the 

features.  

 

3.3.1 Review of Feature-based Matching 

Early work regarding feature based-matching was undertaken by Barnard and 

Thompson in [2]. In their approach, well-localised corners are found using the 

Moravec corner detector. An iterative relaxation of the matching surface is then used 
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to find an optimal set of matches. For each point in the first image a probability of a 

match is assigned to each point in the second, and relaxation is then applied in order 

to force the flow field to vary smoothly in the images. Shapiro et al [42] make use of a 

correlation method in their corner matching having found corners using the Wang and 

Brady detector. The corners are then matched using a correlation of small patches 

placed on the detected corners. Trajkovic and Hedley [52] use this same approach 

whilst working with the SUSAN corner detector. They use the standard cross-

correlation coefficient for matching and a disparity constraint to reduce the number of 

mismatches. 

 

When finding feature correspondences certain criteria need to be fulfilled by the 

feature description, namely: 

• Invariance - the descriptions of corresponding features from both the images 

are required to be the same, 

• Uniqueness - different features should have different descriptions, and 

• Stability - the description of a feature, which is slightly deformed in an 

unknown manner, should be close to the description of the original feature. 

An appropriate trade-off is often found between these conditions, and they are not all 

required to be satisfied. Features from the images with the most similar invariant 

description are paired as corresponding features. The selection of the types of the 

invariant description depends on the feature characteristics and also on the assumed 

deformation of the images. When searching for the best matching feature pairs in the 

space of the feature descriptors, the minimum distance rule with thresholding is 

normally applied. 

 
3.3.2 Matching through correlation 

In this research, the correlation and strength of match measure presented in the paper 

by Zhang et al. [56] are considered in the matching step of the image registration 

process. Consider an arbitrary corner m1 detected in the first of two images, with 

image coordinates given by vector m1 = [ ]ii vu , T . The aim of corner matching is to 

find the corresponding feature m2 in the second image. As comparing m1 to all the 

corners in the second image is computationally expensive, the common approach is to 

use is a correlation-based technique. 
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Given a correlation window of size ( ) ( )1212 +×+ mn  centred at m1, a rectangular 

search area of size ( ) ( )1212 +×+ vu dd  is selected around this location in the second 

image. This search area has to be larger than the expected displacement of the feature 

between the two frames and a priori knowledge of the disparity between the matched 

points is needed. Searching for a match is reduced from the entire image to this area. 

Prior to the correlation, an image smoothed with an averaging filter of size ww ×  is 

subtracted from both images. This is done to compensate for any brightness 

differences in the images and allow a faster correlation calculation.  

 

A correlation operation is then performed on a given window between point m1 and 

all the corners m2 lying within the rectangular search area in the second image. All the 

corners from the second image lying in this search area are considered candidates for 

the match and compared with m1. A score or a measure of similarity is computed 

between the small neighbourhood around the corner m1 and a correlation window in 

the neighbourhood of all the feature match candidates. This procedure is shown in 

Figure 3.2. 

 

 
 

Figure 3.2: Searching for a match by correlation. Figure obtained from [56]. 
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In our implementation, the normalised cross correlation (NCC) coefficient is the 

similarity measure and the correlation score is defined as: 

Score(m1, m2)
( ) ( )[ ] ( ) ( )[ ]
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is the average at a point ( )vu,  of kI  ( )2,1=k , and ( )kIσ  is the standard deviation of 

the image kI  in the neighbourhood ( ) ( )1212 +×+ mn  of ( )vu, , given by 
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The score ranges from -1, for two correlation windows which are totally dissimilar, to 

1, for two correlation windows that are identical (that is, for perfect correlation). In 

order to select the most consistent matches a constraint is placed on the correlation 

score. A match that has the highest correlation and scores above a predetermined 

threshold value is selected and forms a candidate match. Other measures of similarity 

that may be used in place of the NCC may be found in [46].  

 

For each corner in the first image, we obtain a set of candidate matches from the 

second image and vice versa. Notably, it is possible to obtain no candidate matches 

for certain corners. A sufficiently large number of detected corners is needed to avoid 

this situation hampering the whole registration process. Further, the matching process 

is an ill-posed problem, and although the threshold on the similarity measure reduces 

the number of mismatches it is still impossible to eliminate the occurrence of 

mismatches. 

 

Depending on image content and time considerations, different values may be used 

for the filter size, correlation window and other variables. In our implementation, as 

default values, w = 39 is used for the filter size, n = m = 7 is used for the correlation 

window size, and a threshold of 0.7 on the correlation score is chosen. For the search 

area, ud  and vd are generously set to half of the image width and height, respectively. 
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This was done as we assumed the images overlapped by at least 50%. Also, whereas 

increasing the search area increases the probability of a bad match as there are more 

candidates, making the area too small is too restrictive 

 
3.3.3 Support for a candidate match                              

The correlation method described in the previous section results in corners in the first 

image possibly having several candidate matches in the second image and vice versa. 

Matching ambiguities may be resolved in several ways. This section explains and 

defines the strength of the match as described in [56], and shows how putative 

matches can be obtained. 

 

Consider a candidate match (m1i,m2j) where m1i is a corner detected in the first image 

and m2j is a corner detected in the second image. Let N(m1i) and N(m2j) be, 

respectively, the neighbours of  m1i  and m2j within a disc of radius R. If (m1i,m2j) is a 

good match, we expect to see many matches (n1k,n2l), where n1k∈N(m1i) and 

n2l∈N(m2j) such that the position of n1k relative to m1i is similar to that of n2l relative 

to m2j. Alternatively, if (m1i,m2j) is a bad match, few or no matches are seen in their 

neighbourhood. The measure of support or strength for a match, SM is defined as: 

                SM(m1i,m2j) = ( )
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where ijc  and klc  are the correlation scores of the candidate matches given in the 
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 Further details on this measure of support for a candidate match can be found in [56] 

and are omitted here. 
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With regard to Zhang’s measure of support the following remarks are made in [21]: 

• For the support of the match, only the candidate matches whose positions 

relative to the considered match are similar in the neighbourhoods are counted. 

• The test of similarity in the relative positions is based on the relative distance, 

r. Whilst the similarity in relative positions is justified by the hypothesis of an 

affine transformation being able to approximate the difference between the 

small neighbourhoods of the proposed match, Zhang et al’s criterion allows 

for a larger tolerance in distant differences for distant points. 

• If a corner detected in the first image has several candidate matches in the 

second image, only the one, which has the smallest distance difference, is 

accounted for. This is achieved using the “max” operator. 

• The contribution of each of the candidate matches is weighted by its distance 

to the match. A close candidate match thus gives more support to the match 

under consideration than a distant one. 

One pitfall in this measure of support is that it is not symmetric. That is to say, it is 

possible that the strength of the match is not the same if the role of the images is 

reversed. This occurs when several corners in one image are candidate matches for the 

same corner in the other image as shown in Figure 3.3. 

 

 
 
Figure 3.3: Illustration of the non-symmetric problem of the measure of support. 

n11 and n12 share the same corner n21 as a candidate match. Figure obtained from [56] 

 

Before the summation is computed, if several corners score the maximal value with 

the same point, then only the corner which gives the largest value is counted. This is 

done to ensure that the same pairing is counted in the event of the role of the two 

images being reversed. In [56], a relaxation method is used to obtain putative 
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matches. This method consists of minimising an energy function that sums up the 

strengths of all the candidate matches. In our implementation, a similar approach is 

followed. A support of match matrix is formed whose rows represent the corners in 

the first image and columns represent the corners in the second image. The entries 

that are both highest in their respective columns and rows are chosen as matches.  

 

 Pilu [37] finds the putative matches via Singular Value Decomposition (SVD). This 

approach is also followed in [21] where it is suggested that the relaxation method be 

replaced by, or combined with the SVD approach. However, the justification for this 

suggestion is that the SVD approach works well when only a few features are used. In 

our implementation however, due to the large number of features we use, the 

computational cost of using the SVD approach is high. 

 

3.4 Experimental results 

In this section, the results of the corner detection by the Harris detector and the 

matching by correlation are examined. The Harris detector and correlation matching 

are tested on the basis of: 

• Accuracy – to test this criteria we use various types of images that would 

present the methods with a range of corner types, and 

• Stability – by observing the matches obtained by the correlation-based 

matching. Better results can be obtained if a sub-pixel matching technique is 

used, but this comes at the expense of incurring a high computational cost. 

Various images are used to test corner detection and matching method. The images 

used to the corner detection are: 

1) A Synthetic image 

This image is used to observe how well the Harris detector handled different types 

of junctions [51]. 

2) Indoor images  

These test images are captured by a panning camera and contain a static scene 

with no moving objects in it. The images are used to observe how stable the 

corner detection is, and how the matching technique performs. 
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3) Outdoor images 

We use some outdoor images to test how geometric corners as well as corners in 

textured regions can be detected. This is useful in the case of our overall approach 

being extended to outdoor scenes. The images contain both weakly and highly 

textured regions as well as geometric corners. 

The Harris detector requires only one threshold: the lower the contrast in the image 

the lower the threshold needed, and vice-versa. A suitable range is found to be 3000 

to 13000 depending on the image content. In our implementation we set the default to 

4000. The amount of computation is independent of image content and n6  additions 

and 103 +n  multiplications (where n  refers to the diameter of the window used) are 

required. For 5=n  we get 55 operations per pixel. Figure 3.4 shows the results of the 

corner detection on the various images. 

   
                             (A)                                                              (B) 

   
                               (C)                                                                (D) 
Figure 3.4: Results of the Harris Corner detector. (A) Synthetic image; (B) Desk 

image; (C) Notice board image; (D) Outdoor image. 
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A wide Gaussian smoothing function is able to reduce noise effectively but affects the 

location of the detected corner. A trade-off between consistency of detection and 

localisation is made, especially since the Harris corner detector is known to have a 

lower accuracy for other types of junctions when compared to L junctions [52].  

 

The results of the corner matching are shown next. Once again, various image types 

are used to test that the method conformed to the criteria set. Figure 3.5 shows two 

views of the Leuven castle and the results of the corner detection and matching. 

Figure 3.6 shows the results of our approach on a static laboratory scene captured by a 

panning PTZ camera. Figure 3.7 shows the results of our approach on a static 

laboratory scene captured again by a panning PTZ camera. Two people moving 

independently of the camera motion are present. 

   
 
                              (A)               (B) 
 

 
(C) 

Figure 3.5: Matching by correlation. (A) (B) two images from the Leuven castle 

image sequence with the detected corners superimposed; (C) putative matches are 

shown by the lines linking the matching corners 
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      (A)         (B)  
 

 

 
 

(C) 
 
 

Figure 3.6: Matching by correlation. (A) (B) two images of a static laboratory scene 

with detected corners superimposed. The images are captured by a Pan-Tilt-Zoom 

camera from different viewpoints; (C) putative matches are shown by the lines linking 

the matching corners 
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   (A)                                    (B) 
 

 
(C) 

Figure 3.7: Matching by correlation. (A) (B) two images of a static laboratory scene 

that are captured by a Pan-Tilt-Zoom camera and containing moving people. The 

detected corners are superimposed; (C) putative matches are shown by the lines 

linking the matching corners 

 

 

3.5 Conclusions 
In terms of stability, the detector is found to be well suited to consistently finding 

corners reliably enabling correspondences to be found. Several corners are detected in 

the images and one approach would be to restrict their number before matching them. 
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The number of corners detected can be reduced by using a higher threshold or only 

selecting corners with a specific distance between them. This could be tuned to yield 

the desired number of corners. A point worth noting is that most of the strong corners 

in the images are located in the same area and so care would have to be taken to 

ensure the detected corners stay well spatially distributed over the images. 

 

The localisation error criterion is used to evaluate interest points in images and 

measures whether a corner is accurately located at a specific 2D location. It is, 

however, an intrinsic error of the corner detection and cannot be measured directly 

from the images [58]. From the observed results, although “conventional” corners 

such as L-junction, T- junctions and Y-junctions satisfied the definition of a corner as 

a point where the local autocorrelation of the image intensity is high, so too did 

locations in the image with significant texture. The Harris detector detected corners 

well and had a good localization performance.  

 

Another important criterion for the use of a corner detector in our application is 

consistency of detection. Repeatability explicitly compares the geometric stability of 

the detected corners between the two images of the scene taken from different views. 

A corner is “repeated” if the 3D scene point in the first image is also detected in the 

second one. The repeatability rate is then the percentage of the total observed points 

in both images [41]. In our approach, corner detection is not a final result in its own 

right but more an input for further processing. Therefore, the true performance 

criterion, we feel, is how well the detection prepares itself as an input to subsequent 

algorithms – in our case the corner matching and homography estimation. The Harris 

detector is found to be computationally efficient; its computation is independent of the 

images and also easy to implement.  

 

The correlation-based matching approach we use provides reasonably good matches. 

However, the putative matches obtained show inevitable mismatches. The matching 

error can be determined from the number of false matches obtained when establishing 

the feature correspondences in the images. Only overlapping regions in the images 

would be considered and a matching error determined from the true and false matches 

in this region. Corners that do not appear in both images would corrupt the matching 
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error. A mathematic formulation of determining the matching error (or repeatability 

rate) can be found in [40 and 41]. 
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Chapter 4 
 

Robust Transform Model Estimation 

and Image Warping  

“I not only use the brain that I have, but all I can borrow.” 

- Woodrow Wilson (1856 - 1924)  

       
Once the features have been detected in the images, and their correspondences 

established, the mapping function that may be used to align the images can be 

estimated. As the images acquired by the camera are related by a homography, we 

describe the robust estimation of this transform by the RANSAC algorithm. Although 

there are moving objects in the scene, under the dominant motion assumption these 

are treated as outliers to the dominant camera motion that the homography describes. 

 

4.1 Introduction  
Transform models may be divided into two broad categories depending on the amount 

of image data that is used as a basis for their support. A global model is composed of 

a single set of mapping function parameters that maps the entire image. In other 

words, a single equation maps each point in the one image to a corresponding location 

in the other image, and the parameters of this equation do not depend on the image 

location. Rather, all parts of the image are used to compute the mapping function 

parameters.  

 

In contrast, for local models the mapping of points depends on the location of the 

point in the image. The local mapping functions treat the image as a composition of 

several smaller patches and so the parameters of the mapping function need to be 

defined. Only relevant local parts of the image for each set of local parameters are 

used in determining the local transformation. Local models are not required for the 

applications this thesis looks at and are not discussed further. 
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A homography relates any two images that are captured by a camera that rotates about 

its optical centre, as is the case with our PTZ camera. It is this transform we use to 

find the inliers from the putative matches found and subsequently align the images. A 

robust estimator is used to estimate the homography that is responsible for the motion 

of the majority of the corners, which we refer to as the dominant motion. Further, 

unless the scene is cluttered with many moving objects, this is assumed to be the 

motion of the camera with respect to the static background [13, 30].  

 

4.2 Robust estimation of a homography  

If exactly four point correspondences are given, then provided no three points are 

collinear an exact solution for the matrix H is possible. This is referred to as the 

minimal solution. These four point correspondences can manually be selected and 

used in generating a homography. The minimal solution is important as it defines the 

size of the subsets required in robust estimation algorithms. When points are 

measured inexactly, and if more than four such correspondences are given, then the 

correspondences are not totally compatible with any projective transformation. The 

task at hand then becomes one of determining the ‘best’ transformation from the data 

available. This is achieved by finding the transformation H that minimizes some cost 

function. There are two main categories of cost function: those based on minimizing 

an algebraic error, and those based on minimizing a geometric or statistical distance. 

The latter type of cost function is used in this research and is now briefly explained. 

 

The cost function we minimize is the Symmetric transfer error and this function is 

based on the measurement of geometric distance in the images. The symmetric 

transfer error considers the forward (H) and backward (H-1) transformations, and sums 

the geometric errors corresponding to these transformations. This error is given by 

                                            � +−

i
iiii HxxdxHxd 2'2'1 ),(),(                                     (4.1)    

The first term in this sum is the transfer error in the first image and the second term 

the transfer error in the second image. The estimated homography is the one for which 

equation 4.1 is minimized. 
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Figure 4.1 illustrates the discussion on the symmetric transfer error. 

 

 
 Figure 4.1: Symmetric transfer error when estimating a homography. The points 

x  and x′ are the measured (noisy) points. Using the notation ( )yxd ,  for the 

Euclidean distance between x and y , the symmetric transfer error 

is� +−

i
iiii HxxdxHxd 2'2'1 ),(),( . 

 

Two more points worthy of note are mentioned next. A more detailed discussion on 

these points, as well as on the computation of the homography in general, can be 

found in [19]. The first point relates to the modelling of the measurement error or 

noise. In order to obtain an optimal estimate of H, it is necessary to have a model for 

the noise present. A common assumption is that the noise obeys a Gaussian 

probability distribution. This assumption not justified in general, in that it takes no 

account of the presence of grossly erroneous measurements (outliers) in the set of 

matches.  

 

The second point concerns the selection of a coordinate system for the computation of 

H. In the approach we follow, points in the images are translated so that their centroid 

is at the origin and are then scaled so that the average distance from the origin is equal 

to �2. The resulting transformation is then applied to both images independently. 

Normalizing the data by translating and scaling the image coordinates is essential. 

Other than improved accuracy, a data-normalizing step allows for an algorithm 

invariant with respect to arbitrary choices of the scale and coordinate origin. This step 

undoes the effect of coordinate changes by effectively choosing a canonical 

coordinate frame for the measured data. After the inliers and homography have been 

found, de-normalization is then performed. 
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As is observed in the section on the feature-matching step of image registration, due 

to the matching being based on proximity and similarity, mismatches frequently occur 

in our experiments. An assumption of a Gaussian error distribution would therefore 

not be valid. These mismatches, which are outliers to the Gaussian distribution and 

can severely disturb the estimated homography, consequently need to be identified. 

The goal then is to determine a set of inliers from the matches so that the homography 

can be estimated in an effective manner.  

 

Rigid motion imposes constraints on the motion of points between images, which the 

matched points between two views need to satisfy. In this thesis RANdom Sampling 

Consensus (RANSAC) [10] is used to automatically compute a homography between 

two images. The input to the RANSAC algorithm is the estimated feature 

correspondences in the images, and the output is the estimated homography with a set 

of interest points in correspondence, no other a priori information is required. Four 

correspondences determine a homography, so the sample size used is four. With 

minimal sets of four correspondences randomly selected, each set generates a putative 

homography. Taking more than four points is ineffective as the probability of finding 

a random sample of inlier matches decreases with respect to increasing sample size 

[19]. 

 

The support for each sample set is measured by applying the homography to all the 

points in the initial match set, and then counting the number of matches within a 

distance threshold (in our case the symmetric transfer error). For the RANSAC 

algorithm, a decision needs to be made regarding the number of samples and the type 

of sample selection taken. Firstly, degenerate samples in which three of the four 

points are collinear are discarded, because a homography cannot be generated from 

them. Next, samples that consist of points with a good spatial distribution over the 

images are sought. As revealed in [19], the estimated homography maps a region 

straddled by the computation points, but the accuracy generally deteriorates with 

distance from this region. This is known as the extrapolation problem and hampered 

our early attempts to estimate a homography. This problem is dealt with by ensuring 

that the images used are well textured so that the detected corners (and hence putative 

matches) have a good spatial distribution over both images.  
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To cut down the computational cost of the RANSAC algorithm, we envisage that at 

least one hypothesised motion will be close to the true motion we wish to obtain. If 

the proportion of valid data is ( )vp , and the minimum number of features required to 

form a hypothesis is m , then the probability, ( )cMp  that a correct hypothesis has been 

encountered after N  iterations is approximately 

                                           ( ) ( )[ ]Nm
c vpMp −−= 11 .                                 (4.2) 

A stopping condition is usually determined from a desired confidence level, in our 

implementation, we use a probability ( ) %99>cMp . Whilst ( )vp  is generally not 

known in advance, a lower bound can be estimated from the largest ( )vp  observed. 

An additional optimal estimation and guided matching step that can be iterated until 

the number of correspondences is stable is often proposed.  This step is however 

omitted here. 

 

To summarise, in RANSAC the support for a solution is the number of 

correspondences where the error is below a given threshold. The strength of this 

algorithm lies in the fact that it is likely to find at least one sample that only consists 

of inliers and thus results in a good estimate of the required homography. The robust 

estimator dubbed MLESAC (Maximum Likelihood Estimation Sample Consensus) 

[50] adopts the same sampling strategy as RANSAC in generating putative solutions 

to the homography and then seeking support in the remaining matches. Unlike 

RANSAC, which counts the number of matches that support the current homography, 

MLESAC evaluates the log likelihood of the solution taking into account the 

distribution of outliers. Errors in MLESAC are modelled as a mixture model of 

Gaussian and uniform distributions. Whereas in our implementation we minimise the 

symmetric transfer error, this algorithm is observed to minimise the reprojection error 

function [19]. As in RANSAC, it is envisaged that at least one hypothesised 

homography will be close to the true one if sampling and evaluation are repeated over 

a large number of samples. Whilst this algorithm is not used in our final 

implementation it shows promising improvement over the well-known RANSAC. 

Further details on this algorithm can be found in [49 and 50]. 
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4.3 Image warping 
Once the homography has been found it may be applied to one of the images to align 

it with the other. The task of applying a known transformation to an image is known 

as image warping. Transforming each pixel from the first image using the estimated 

homography (forward approach) would result in holes and /or overlaps in the output 

image due to discretization and rounding. The backward approach is therefore usually 

taken. First, the inverse mapping is applied to the output sampling grid, projecting it 

onto the input. The result is a resampling grid specifying the location at which the 

input is to be resampled. The input image is then sampled at these points and the 

values assigned to their respective output pixels. Traditionally, the Sampling Theorem 

defines resampling: A continuous signal may be reconstructed from its samples if the 

signal is band-limited and the sampling frequency exceeds the Nyquist rate. 

 

The first condition avoids spectra with infinite extent that are impossible to replicate 

without overlap. The second condition refers to the minimum sampling frequency sf . 

As the sampling frequency must be greater than twice the maximum frequency maxf  

present in the signal, the Nyquist frequency is the minimum distance between the 

spectra copies, each with bandwidth maxf . Letting kx  be a set of points located on 

integer positions in 2-D space. Sampling can be expressed as: 

                                              ( ) ( ) ( )� =−= kkk xIdxxxxII δˆ                                     (4.1)    

If the input signal is band limited the original signal can then be perfectly 

reconstructed by: 

                                            ( ) ( ) ( )�
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kkk xxcxxcIxI 2211 sinsinˆ                       (4.2) 

The interpolation is achieved by the convolution of the image with an interpolation 

kernel. Although sampling theory establishes the sinc function as the ideal 

interpolation kernel, it is not suitable for practical applications due to its infinite 

distribution. A number of approximations are proposed in literature, for example the 

nearest neighbour, bilinear and cubic spline methods of interpolation. A thorough 

discussion on image resampling can be found in [20, 54] to which the reader is 

pointed to. These references also provide the mathematical background on image 

warping methods. For a review of image warping methods [15] provides a good read 
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and excellent references on the topic. In our implementation, we use MATLAB’s 

imtransform function to transform our images according to the estimated 

homography. We use the bilinear interpolation kernel as the default form of 

interpolation. The next section shows the results of the registration of two images. 

 

4.4 Experimental results 

The detected corners and putative correspondences that serve as the inputs to the 

RANSAC algorithm are found using the techniques described in Chapter 3. The 

default values for the number of RANSAC iterations was set to 1000 and the inlier 

threshold distance 001.0=t . As all the images used gave similar results, only two 

image pairs of a static scene are shown here. Figure 4.2 shows a static scene with the 

only movement being that due to the camera. Figure 4.3 shows a static scene 

containing both camera motion and an independently moving object. 

                 

                
Figure 4.2: (Top) two views of a static laboratory scene. The images are 

320240 × pixels. (Bottom) RANSAC inliers: 60 correspondences from 90 putative 

matches consistent with the estimated H and the aligned images.  
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Figure 4.3: (Top) two views of a static laboratory scene containing a moving object. 

The images are 320240 × pixels. (Bottom) RANSAC inliers: 50 correspondences 

from 70 putative matches consistent with the estimated H and the aligned images.  

 
The computational efficiency of RANSAC can be improved by considering the two 

factors that the speed depends on: the number of samples drawn to guarantee the 99% 

confidence level to obtain a good estimate; and the time spent evaluating the quality 

of each hypothesized model (this is proportional to the size of the data set). 

 

4.5 Conclusions 
The estimation of the homography using the RANSAC algorithm is not affected by 

independent motion within the scene (provided the majority of moving pixels belong 

to the background) or slight changes in illumination and shadows. Despite the 

mismatches that were encountered, the images could still be aligned using this robust 

approach. However, any moving objects in the scene appear as “ghosts” in the aligned 

images.  
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Chapter 5 
 

Sequence Registration and Mosaic 

Rendering 
“Men give me credit for some genius. All the genius I have lies in this; when I have a 

subject in hand I study it profoundly. Day and night it is before me. My mind 

becomes pervaded with it. Then the effort that I have made is what people are pleased 

to call genius.” 

- Alexander Hamilton (1755 - 1804)  

 

In this chapter we extend the procedure used to register two images and use it to align 

a sequence of video frames. The creation of the resulting mosaic is achieved in two 

stages; sequence registration and mosaic rendering. Sequence registration estimates 

the point correspondences between the frames to a global model of the sequence. The 

rendering stage is achieved by applying a temporal operator over the registered and 

aligned images, resulting in a single mosaic. 

 

5.1 Global registration and sequence alignment 
Global registration establishes a mapping between each frame in a sequence and an 

arbitrary frame. In the preceding chapters we described how to map one image to 

another using a homography. To extend this approach to an entire sequence a 

reference frame must be chosen to which the images will be warped. The choice of 

reference frame ultimately affects the appearance of the resulting mosaic. 

 

If there is sufficient overlap in the frames of the sequence being considered a fixed 

reference frame can be chosen, and all the homographies between each image and the 

fixed one computed. The homographies are then used to warp each image to the fit the 

content of the reference frame. This is known as frame to fixed frame registration. In 

the sequences that we consider the images are registered with respect to the first 
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frame. However, in some applications the reference frame may not correspond to any 

one of the frames.  

 

When the sequence spans a wide area the matching of features is more robust between 

contiguous frames. As a homography is a linear operator, the mappings between non-

contiguous frames can be computed by sequentially multiplying the homographies of 

the in-between frames. Let 1,Re fH  be the homography between the reference frame 

and the first image frame. The global registration is defined by the set of 

homographies { }NiH if ....1:,Re =  where for Ni ≤≤2  

                                              
1,

1
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=

=∏=
kk

i

kifif HHH                                         (5.1) 

Once the images have been globally aligned they can be considered to form a 3-D 

space-time continuum as shown in figure 5.1. 

 

 
Figure 5.1: Temporal Alignment: in the absence of parallax, a temporal line through 

the image planes corresponds to the same world point. 

 

5.2 Mosaic rendering 
Mosaic creation is one of the applications for which image registration may be used. 

Having registered the frames the next step is to merge them. Several issues need to be 

dealt with to achieve this: the choice of reference frame or reprojection manifold onto 

which the images are composited; which actual frames of the sequence are to be used; 

and the choice temporal operator to be used for blending the images which determines 

how independently moving objects in the scene are handled. 
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Reprojection is the process of transforming every point in every image to a point in 

the global coordinate frame. Although the set of images and homographies form a 

mosaic representation of a scene, a rendering transformation T  is needed to map 

points in the registered images to points in the global frame. This transformation T  is 

determined by the choice of reprojection manifold, the surface that plays the role of 

the imaging sensor in the virtual camera [6]. The simplest manifold is a plane, onto 

which all of the images are reprojected. In this case the rendering transformation is a 

homography and the resulting mosaic has the classic “bow-tie form. Notably, the 

planar manifold cannot be used for sequences that sweep an angle larger than 90 

degrees as the projective distortion means that the mosaic becomes infinite in size. 

Cylindrical and spherical manifolds improve the appearance of the mosaic and can 

handle large sweeps of up to 360 degrees. However these manifolds require a camera 

calibration step and therefore the simple planar projection was used in our 

implementation.  

 
On regions that overlap, there are multiple contributions for the same world point on 

the output image. A unique intensity value that is to be used therefore has to be found. 

As the  contributions for the same world point lie on a line parallel to the time axis the 

images are merged using a temporal filter. Several types of filters may be used to 

construct the mosaic and some of the commonly used ones are the use-last, temporal 

average and the temporal median filters. The use-last method uses the entire content 

of the most recent frame to update the mosaic. Intuitively, this visualized as placing 

the frames on top of each other in the order in which they are captured. Each point in 

the final mosaic contains the pixel value of the last frame that contributed to that 

point.  

 

The averaging filter takes the average of the intensity values. The average filter is 

effective in removing temporal noise. However, if the sequence has moving objects 

on a static background these objects appear blurred in the mosaic. The median filter 

takes the median of the intensity values. This filter removes noise and moving objects 

whose intensity patterns are stationary for less than half of the frames.  
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One interesting form of blending images often used in computer graphics is that of 

alpha blending. Other than the three primary colour channels - red, green and blue, 

the fourth is known as the alpha channel. This channel conveys information about the 

image’s transparency and specifies how foreground colours should be merged with 

those in the background when overlaid on top of each other. Alpha blending therefore 

creates the effect of transparency by combining a translucent foreground with a 

background colour to create an in-between blend and can be used to gradually fade 

one image into another.  

 

The equation used in alpha blending is: 

                        [ ] [ ] ( )[ ]backgroundforegroundblended bgrbgrbgr ,,1,,,, αα −+=                   (5.2) 

where [r,g,b] is the red, green, blue colour channels and alpha is the weighting factor. 

 

The weighting factor is allowed to take any value from 0 to 1. When set to 0, the 

foreground is completely transparent. When it is set to 1, it becomes opaque and 

totally obscures the background. Any intermediate value creates a mixture of the two 

images or a semi-transparency. For instance, a value of 5.0=α  would be a simple 

averaging of pixel values in the overlapping regions. One other form of blending that 

can also be achieved by using the alpha channel is the nearest image centre. Here, 

when extracting values from the input images, the distance of the sampling location 

from the image centre is also computed. The set of values are ranked according to this 

distance, and the candidate closest to its image centre is taken as the output pixel 

value. This is achieved using MATLAB’s bwdist function.  

 

Figure 5.2 on the next page illustrates the steps in forming a mosaic representation 

from a sequence of images and rendering a novel view. For further details on image 

mosaicing the reader is referred to work by Capel, Odone, Shum and Szeliski [5, 6, 

31, 43, 44, and 47]. 
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Figure 5.2: Steps in creating an image mosaic: here the middle frame is taken as the 

reference frame and the rendering transformation T shifts the origin. 

 

5.3 Experimental results 
The following are the results of our approach in using image registration to create 

mosaics. The sequences we use contain motion due to both the camera and 

independently moving objects. As was observed in the experiments in the previous 

chapter, moving objects appear as “ghosts” in aligned images. To avoid this we 

manipulate the value of α to give us our desired results. In our experiments, we were 

not too concerned with seams in the final mosaic but rather with how the moving 

objects appeared. Figure 5.3 shows the effect of alpha blending on 8 frames of two 

people moving in a field. The aim here was to eliminate ghosts appearing in the final 

mosaic. Figures 5.4 and 5.5 show how alpha blending was used to create an effect of a 

moving person fading out and gradually appearing, respectively, in a 16-frame 

sequence. This was done by changing which frame was considered as the background 

and which was the back ground in equation 5.2. The first 8 frames were blended 

together, as were the last 8. The final result was obtained by merging these two 

mosaics. 
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(a) 

 

 
(b) 

 

 
(c)  

 
Figure 5.3: Field sequence mosaic (a) 8 frames of two people moving in a field 

captured by a moving camera (b) Resulting mosaic using alpha bending, 1=α and (c) 

0=α  

 



 41 

                   
                         (a)                                                                             (b) 
 

 
                                                                (c) 
 
Figure 5.4: Road sequence mosaic (a) first 8 frames and (b) last 8 frames blended to 

create two mosaics. (c) The overall mosaic using alpha blending ( )2.0=α  to give the 

effect of the moving person fading out. 
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(a)       (b) 

 

 
(c) 

 
Figure 5.5: Road sequence mosaic (a) first 8 frames and (b) last 8 frames blended to 

create two mosaics. (c) The overall mosaic using alpha blending ( )2.0=α  to give the 

effect of the moving person gradually appearing.  

 

5.4 Conclusions 
The alpha blending does not get rid of the seams in the final mosaic. Rather, by using 

1=α gives a mosaic equivalent to using the last frame overlaid over the first. Using 

0=α results in a mosaic that would have been obtained using the use-last method. 

This results in visible seams in the final mosaic. The advantage of this method was 

that ghosts did not appear in the final mosaic. Alpha blending was used effectively to 

gradually fade out (or in) a moving person in by manipulating the appearance of 

ghosts the final mosaic. 
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Chapter 6 
 

Motion detection and segmentation 
“Simplicity is the ultimate sophistication.” 

     -Leonardo da Vinci (1452 - 1519) 

 
In this chapter, we look at the methods of temporal differencing, thresholding and 

morphology. Having compensated for the camera motion by aligning images, we find 

the difference between the aligned images and apply a threshold to detect the 

independent motion. The morphological filters are used to eliminate narrow regions 

of falsely detected motion whilst preserving the original size and shape of the wide 

regions of true motion. 

 

6.1 Review of independent motion detection 

Temporal differencing utilises the pixel-wise differences between two or three 

consecutive frames in an image sequence to detect motion. Jung and Sukhatme [24], 

in an approach very similar to the one we use, generate difference images whose 

normalised pixel values represent the probability of moving objects. The size and 

position of the moving objects are estimated using a Bayesian formulation based on 

the sequence of difference images. 

 

Lipton et al [27] use a combination of temporal differencing and image template 

matching to achieve good detection, classification and tracking performance in the 

presence of clutter. Temporal differencing fails if the target is occluded or ceases its 

motion. As such they complement the temporal differencing with template matching 

that is most robust when the target is stationary. Moving targets are therefore detected 

using temporal differencing and the template-matching algorithm trained. The targets 

are then tracked using template matching guided by the temporal differencing stage. 

 

In their approach, Paragios and Tziritas [36] address the detection of moving objects 

and their localization in two consecutive images in a sequence. They argue that the 
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boundaries of a moving object cannot be located precisely by inter-frame differencing 

alone. Instead they propose a statistical framework to model the difference image as a 

mixture of two zero-mean generalized Gaussian distributions, and then use a Gibbs 

random field for describing the label set. A maximum a posteriori criterion is used to 

adaptively determine the threshold for the detection of motion. The statistical 

framework used enables good results to be obtained even in the presence of camera 

motion provided this motion is estimated and compensated first. Other approaches 

towards achieving independent motion detection can be found in [13, 22, 26]. 

 

6.2 Temporal differencing and thresholding 
The simplest method of temporal differencing is to take two frames and determine the 

absolute difference. A threshold function is then applied to determine any changes 

between the frames. If nI  is the intensity of the nth  frame, then the pixel wise 

difference function n∆ is then 

                                                        1−−=∆ nnn II                                                    (6.1) 

For a stationary camera, the pixel-by-pixel subtraction method is used to detection 

motion as for a static scene a given 3D point continuously projects to the same 

position in the 2D image plane. In our implementation, a moving object is detected by 

finding the pixel-wise difference between two frames, having mapped pixels 

corresponding to the same 3D points to corresponding image plane positions (thereby 

compensating for the motion of the camera).  

 

Thresholding is a well-known technique used in image segmentation that converts a 

multi-scale image into a binary image or mask. In the binary mask each pixel value is 

represented by a single binary digit. In its simplest form, thresholding is a point-based 

operation that assigns the values of 0 (black) or 1 (white) based on a comparison with 

a global threshold T. Thus, having found the pixel-wise difference function n∆  a 

motion image nM is extracted by thresholding 
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This is known as global thresholding as a single threshold value is calculated for the 

whole image. Among the many global thresholding methods, is the popular and 
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efficient method by Otsu [33]. This method is based on an analysis of the shape 

properties of the grey scale level histogram of the whole image. An optimal threshold 

is then found according to the discriminant theory. Several other thresholding 

methods exist and generally thresholding methods can be grouped according to the 

information they exploit [39]. These categories are: 

• Histogram shape based methods where the peaks, valleys and curvatures of 

the smoothed histogram are analyzed. Two major peaks and an intervening 

valley are searched for using tools such as the convex hull of the histogram, or 

its curvature and zero crossings of the wavelet component. Other authors try to 

approximate the histogram via two-step functions or two-pole autoregressive 

smoothing. 

• Clustering-based methods in which the grey level samples are clustered in to 

parts as background and foreground (object) or alternatively the grey level 

distribution is modelled as two Gaussian distributions.  

• Entropy-based methods result in algorithms for example, that use the 

entropy foreground-background regions, the cross-entropy between the 

original and binarized image etc. The maximization of the entropy of the 

thresholded image is interpreted as indicative of the maximum information 

transfer. 

• Object attribute-based methods search a measure of similarity between the 

grey-level and binarized images, such as fuzzy similarity, shape, edges, 

number of objects etc. Alternatively they consider certain image attributes 

such as compactness or connectivity of the objects resulting from the 

binarization process or the coincidence of the edge fields. 

• Spatial methods use the probability mass function models taking into account 

correlation between pixels on a global scale. Spatial information of object and 

background pixels are also utilized, for example, in the form of context 

probabilities, co-current probabilities, local linear dependence models of 

pixels, two-dimensional entropy etc. 

• Local methods do not determine a single value of threshold but adapt the 

threshold value depending on the local image characteristics. These methods 

assume each pixel deviates according to its own model and threshold each 

pixel according to the context of its model. The value of the threshold depends 
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on some local statistics like range, variance, and surface fitting parameters or 

their logical combinations. 

Detailed information on the various image thresholding techniques in each of these 

categories is found in [39] where a comprehensive survey of image thresholding 

methods that both describes the underlying ideas of the algorithms and measures their 

performances in different contexts. 

 

For simplicity, in our implementation global thresholding is used. The global 

threshold T has been determined empirically to be ≈ 15% of the digitizer’s brightness 

range. As grey scale images are used, a value of 40≈T  is applied to the difference 

image. 

 

6.3 Morphological operations 

Mathematical morphology is a field of non-linear image processing based on 

minimum and maximum operations and is used to analyse the geometric structure 

inherent within an image. Morphological operations allows for the systematic 

alteration of the geometric content of an image while preserving the stability of the 

important geometric characteristics. An original image is transformed into another 

through the interaction with another image of a certain shape and size, which is 

known as the structuring element. Geometric features in the images similar in shape 

and size to the structuring element are preserved whilst other features are suppressed 

[55]. Morphological operations therefore eliminate irrelevant objects whilst 

preserving the shape of larger regions. 

 

Definition: Translation  

Given an image A , the translation of set A by the point x , denoted by xA , is defined as 

                                                   { }AaxaAx ∈+= .                                                  (6.3) 

Definition: Reflection 

Given an image B , the reflection of set B , denoted B̂  is defined as  

                                               { }BbbwwB ∈−== ,ˆ .                                                (6.4) 

This operation has the same effect as rotating the image 180 degrees about its origin. 
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6.3.1 Binary erosion and dilation 
The two basic building blocks for the construction of morphological operators are 

erosion and dilation. This section presents the underlying theory of these two 

operators. 

 

Definition: Binary Erosion 

Erosion of a binary image A  by a structuring element B , denoted by BAΘ  , is 

defined as 

                                         { }BbAbzzBA ∈∀∈+=⊗ , .                                          (6.5) 

The above definition of erosion can be redefined by a Minkowski subtraction as: 

                                                   bBb
ABA −∈

∩=⊗ .                                                     (6.6) 

where “-b” is the scalar multiple of the vector b by -1. 

 

The erosion of the original image by the structuring element can be described 

intuitively by template translation. Formally, given a mask M  ( )nn ×  and a part of a 

binary image A  of the same size as the mask, the erosion mask is defined as  
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Erosion shrinks the original image and eliminates narrow regions while wider ones 

are thinned. This is illustrated in Figure 6.1. 

 

Figure 6.1: An example of Binary Erosion. A) Original Image, B) Structural 

element; x is the origin, C) Image after erosion; original in dashes. 
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Definition: Binary Dilation 

With A  and B  as sets in 2Z , the dilation of A  by B  (where A  is an image and B  is 

the structuring element), denoted by BA⊕ , is defined 

                                { }BbAabazZzBA ∈∈+=∈=⊕ ,,2 .                                     (6.8) 

It can be shown that the dilation is equivalent to a union of translation of the original 

image with respect to the structuring element: 

                                                    ( )bBb
ABA

∈
∪=⊕ .                                                    (6.9) 

Dilation is found by placing the centre of the template over each of the foreground 

pixels of the original image and then taking the union of all the resulting copies of the 

structuring element, produced using the translation. Dilation has the effect of 

expanding an image; so consequently, small holes inside the foreground can be filled. 

As with erosion, dilation can be more formally defined as 
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The effect of binary dilation is shown in Figure 6.2 

 
 

Figure 6.2: An example of Binary Dilation. A) Original image, B) Structural 
element; x is the origin, C) Image after dilation; original in dashes. 

 

After having eroded an image to remove the narrow regions, wider regions that are 

thinned can therefore be restored by applying dilation with a mask of the same size. 

This leads us to more advanced morphological operations; morphological opening and 

closing. 
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6.3.2 Binary opening and closing 
Binary erosion and dilation can be used in a variety of ways to give other 

transformations such as thinning, thickening, skeletonisation and several others. This 

section presents the underlying theory of two of such advanced morphological 

operators obtained by cascading the two basic morphological operators. These are 

binary opening and binary closing. 

 

Definition: Binary Opening 

The process of erosion followed by dilation is known as opening. Opening of a binary 

image A  by the structuring element B , is defined as 

                                             ( ) BBABA ⊕⊗=� .                                                  (6.11) 

This operation has the effect of eliminating small and thin objects, and smoothing the 

boundaries of larger objects without significantly changing their area. This can be 

thought of intuitively as “rolling the structuring element about the inside boundary of 

the image as is illustrated in figure 6.3. 

 

Figure 6.3: Illustration of Binary Opening. A) Original Image, B) Structural 

element; x is the origin, C) Image after opening; erosion followed by dilation. 

 

Definition: Binary Closing 

The process of dilation followed by erosion is called closing. Closing of a binary 

image A  by the structuring element B , is defined as 

                                              ( ) BBABA ⊗⊕=•                                                 (6.12)                  

Binary closing has the effect of filling small and thin holes in objects, and smoothing 

the boundaries of objects without significantly changing their area. Closing can also 
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be intuitively thought of as “rolling the structure element on the outer boundary of the 

image”.  

 

The effect of binary closing is illustrated in Figure 6.4 

 

 

Figure 6.4: Illustration of Binary Closing. A) Original Image, B) Structural 

element; x is the origin, C) Image after closing; dilation followed by erosion; original 

in dashes. 

 

Other advanced and efficient morphological operations can readily be found in most 

computer vision and image processing literature.  

 

6.4 Experimental results 
The following are the results of our approach on a short sequence captured by a non-

stationary camera of a moving person. Two frames were aligned and the absolute 

difference between them found. As regions that do not appear in both frames need to 

be disregarded, these were manually cropped out. Morphological operations were then 

performed to remove erroneously detected regions of motion and a bounding box was 

displayed around the region of true motion. As real-time requirements were not an 

ultimate concern of this thesis, no timing results are shown. However, from the corner 

detection and matching stage, on average our approach took approximately 15 

seconds to complete the motion detection. 
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 Figure 6.5: Independent motion detection (Top) two images of a moving person 

captured by a non-stationary camera. (Bottom) the frame difference between the 

aligned images (left) and the resulting bounding box around the detected motion 

(right). 
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Figure 6.6: Independent motion detection  (Top) two images of a two moving 

people captured by a non-stationary camera. (Bottom) the frame difference between 

the aligned images (left), and the resulting bounding box around the detected motion 

(right). 

 

6.5 Conclusions 
In Figure 6.6, techniques for splitting the two moving people were not explored. 

However, both results show that despite the camera movement regions of independent 

motion can be detected by using image registration. Further the approach, although 

not optimized for real-time operation, was fully automated and robust. 
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Chapter 7 
 

Conclusions and Future Work 
“A conclusion is simply the place where someone got tired of thinking” 

     -Arthur Bloch 

 

“To raise new questions, a new possibility, to regard old problems from a new angle 

requires creative imagination and marks real advances in science.” 

- Albert Einstein (1879 - 1955) 

 

This thesis looked at the stages of image registration and two of its application areas. 

Our aim was to capture images with a PTZ camera panning a scene, register pairs of 

images, and subsequently investigate how the information provided could be 

manipulated. This chapter draws conclusions from the research and gives possible 

future research directions. 

 

7.1 Summary 
The objectives of this thesis were to gain an in-depth understanding of image 

registration. We also examined two different applications of image registration, 

mosaicing and independent motion detection. Due to the project limitations the bulk 

of the work focused on the stages of image registration. The registration of image 

pairs was successfully extended to image sequences and mosaicing achieved. Our 

approach also enabled us to compensate for the camera motion (ego-motion) and 

apply the method of temporal differencing to detect independent motion. Applying a 

global threshold followed by morphological operations, erosion and dilation in 

cascade eliminated erroneously detected regions of motion. We now draw conclusions 

from each stage of our approach. 

• Corner detection and matching 

The Harris detector worked well in detecting corners that were spatially 

distributed, fairly well localised and consistently detected in both images. One 



 54 

pitfall though was that often too many corners were detected and this proved to be 

time consuming for the matching stage. 

 

The correlation-based matching technique developed by Zhang et al [56] found 

good putative matches. As the matching was based on proximity and similarity, 

mismatches were inevitable. One factor that was not investigated was the effect of 

the disparity between the images on both the accuracy and speed of the matching. 

However, real-time detection was not the concern of this thesis. 

• Robust transform estimation and image warping 

The well-known RANSAC algorithm was found to robustly estimate the 

homography in the presence of mismatches. However the real-time performance 

of the algorithm is questionable. Further, the main assumption made was that the 

camera was responsible for the dominant motion. Image pairs were successfully 

aligned using the dominant homography that described the camera motion. 

Although the background was perfectly aligned, moving objects appeared as 

“ghosts”. 

• Sequence registration and mosaic rendering 

Frames from image sequences containing moving objects were used for 

mosaicing. The alpha blending technique gave results equivalent to a use-first or 

use-last blending method depending on whether the value of α was 1 or 0. 

Although the blending was not able to produce a seamless final mosaic, it 

successfully removed the ghosts that would be caused by the moving objects. A 

value of 2.0=α  was used to manipulating the ghosts to make the moving person 

fade out or gradually appear.  

• Motion detection and segmentation 

Using our approach independent motion was detected. Without aligning the 

images first, frame differencing would not have been able to produce meaningful 

results. Due to project time constraints the extension of this a whole video 

sequence or to a useable tracker was not investigated. 

Both the mosaicing and independent motion detection via image registration worked 

well and were not computationally expensive. Although we use the most basic 

methods at each stage of our approach, we still show promising results. To 

incorporate the approach into a fully useable real-time tracker requires faster and 
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more accurate methods for each stage of our registration approach to be researched 

and implemented. Our approach serves as a useful foundation to achieving real-time 

independent motion detection and subsequent active tracking. 

 

7.2 Future research directions 

The applications of image registration that we presented in this thesis can be 

improved upon and extended in several ways. Some of the possible future research 

directions are now discussed. 

• A faster and more accurate detection and matching scheme could be 

investigated. Alternatively, the number of corners detected could have some 

constraints added, for example a constraint on the distance between detected 

corners. This would reduce the time taken for the corner matching and 

transform estimation stages. 

• The RANSAC algorithm could be optimised to be suitable for real-time 

purposes and a guided matching approach used to improve the matching and 

subsequent homography estimation.  

• Median filtering could be used to remove the moving objects in the final 

mosaic. Alternatively a tracking algorithm could be used to identify the 

moving object and a mosaic of a static background created. Blending the 

moving object onto the static background would produce a video of the 

moving object in the background mosaic.  

• Having used the approach outlined in this thesis to successfully detect 

independent motion in the presence of camera motion, the next step would be 

to generalise the registration approach from two images to entire sequences. 

Also, at present we are working with the assumption that only one 

independently moving object is present. Future work would include detecting 

and tracking several moving objects, dealing with occlusions and other such 

problems that were not dealt with by this thesis. 

• Further the result of motion segmentation is affected by the precision of the 

motion estimation. Due to the inaccuracies due to noise in the frames only a 

rough region of the independently moving object may be obtained. As colour-

segmentation can give more accurate the combination of the approach used in 

this thesis and the use of colour information in the images is recommended. 
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An ultimate goal, though beyond the scope of this research, would therefore to 

be to improve the approach we present and incorporate it with a colour-

tracking algorithm for an efficient visual surveillance system. 
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