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Figure 5.3: Linear relationship between the mean bubble size and concentrate grade for

the platinum data set

156



Chapter 5: Machine Vision Performance Relationships – Platinum Data Set

10
1

10
2

10
3

0

1000

2000

3000

4000

5000

6000

p80 bubble size [pixels2]

P
G

M
 N

or
m

al
is

ed
 C

on
c 

G
ra

de
 [%

]

Individual Samples
Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 99.34 %
Standard Error: 550.53
Adj R Squared: 0.369
R Squared: 0.420

10
1

10
2

10
3

0

2

4

6

8

10

12

p80 bubble size [pixels2]

C
u 

N
or

m
al

is
ed

 C
on

c 
G

ra
de

 [%
] Individual Samples

Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 99.31 %
Standard Error: 1.275
Adj R Squared: 0.367
R Squared: 0.417

10
1

10
2

10
3

0

2

4

6

8

10

p80 bubble size [pixels2]

N
i N

or
m

al
is

ed
 C

on
c 

G
ra

de
 [%

] Individual Samples
Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 99.08 %
Standard Error: 0.663
Adj R Squared: 0.349
R Squared: 0.401

10
1

10
2

10
3

60

65

70

75

80

85

p80 bubble size [pixels2]

F
e 

N
or

m
al

is
ed

 C
on

c 
G

ra
de

 [%
] Individual Samples

Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 100.00 %
Standard Error: 0.870
Adj R Squared: 0.702
R Squared: 0.726

10
1

10
2

10
3

0

2

4

6

8

10

12

p80 bubble size [pixels2]

S
 N

or
m

al
is

ed
 C

on
c 

G
ra

de
 [%

] Individual Samples
Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 77.63 %
Standard Error: 1.432
Adj R Squared: 0.105
R Squared: 0.177

10
1

10
2

10
3

0

10

20

30

40

50

60

p80 bubble size [pixels2]

C
r 2O

4 N
or

m
al

is
ed

 C
on

c 
G

ra
de

 [%
]

Individual Samples
Regression Line
Regression Confidence Limits
Sample Confidence Limits

Significance: 100.00 %
Standard Error: 3.320
Adj R Squared: 0.711
R Squared: 0.734

Figure 5.4: Non-linear relationship between p80 bubble size and concentrate grade for the

platinum data set
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5.3 Froth Class & Concentrate Grade

The identification of froth classes has already been dealt with in Section 3.12. It is impor-

tant to remember that the detection of the froth classes could have been made in a number

of ways, each of with their own advantages and disadvantages. These include:

• by classification based on single value bubble size descriptors

• by classification according to dynamic bubble size based techniques such as re-

duced aggregate BSDs

• by classification based on texture measures.

Figure 5.5 shows four example images of the froth classes identified. The colour of the

border around each of the froth images is consistent with the colour of the concentrate

grade data that is presented in the figures that follow.

(a) Froth Class ‘A’. (b) Froth Class ‘B’.

(c) Froth Class ‘C’. (d) Froth Class ‘D’.

Figure 5.5: Sample images of the four froth classes identified on the Amandelbult first

rougher.

Figure 5.6 shows the observed relationships between the froth class and concentrate grade

of the cells being monitored. The figure also shows the resultant R2, adjusted R2, and
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standard error values that are obtained when a model of the form

y = β0 + γ1C1 + γ2C2 + γ3C3 + ε

is used to relate the froth class to the concentrate grade data. Here βi and γi are the

regression coefficients and Ci are indicator variables that represent the froth classes [10].

Further results are presented in Tables 5.4 to 5.6, which show the number of samples

associated with each class, the mean and standard deviation of the assay values from the

results shown in Figure 5.6, and the results of Welch’s t-test calculations to determine

whether the observed values for the different froth classes are statistically different from

one another. Welch’s t-test is an adaptation of Student’s t-test [49] that can be used when

the two samples have different variances. Froth classes with statistically different mean

values are identified by bold text in Table 5.6.

Table 5.4: Number of samples for each platinum froth class.

Froth Class Number of Samples

A 8

B 6

C 6

D 6

Table 5.5: Mean and standard deviation values of the concentrate grade for the platinum

froth classes.

Froth PGM PGM Copper Copper Nickel Nickel

Class Mean Std Dev Mean Std Dev Mean Std Dev

A 2288 413 3.87 1.02 5.40 0.24

B 1459 227 1.63 0.33 3.84 0.34

C 2008 377 3.04 0.38 4.58 0.31

D 2847 809 5.07 1.72 5.76 0.42

Froth Iron Iron Sulfur Sulfur Chromite Chromite

Class Mean Std Dev Mean Std Dev Mean Std Dev

A 65.29 1.05 6.35 1.04 16.36 0.43

B 67.21 0.92 3.62 0.64 30.01 3.28

C 64.09 0.74 4.87 0.40 16.51 0.64

D 63.84 0.81 6.80 0.99 16.45 0.92

Table 5.6 shows that there is a significantly different mean concentrate grade value be-

tween the different froth classes for the majority of froth class/assay combinations. This
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Figure 5.6: Relationships between froth class and normalised concentrate grade for the

platinum data set.
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result is significant from an operational point of view, as it means that plant personnel

can use froth class information to infer the concentrate grade of the flotation cell being

monitored. Furthermore, analyses can be performed to determine the optimal operational

froth class for the cell being monitored. Once this has been done, personnel can be alerted

when the flotation cell is not operating in the desired froth class, and corrective action can

be taken.

Table 5.6: Summary of the statistical confidence of differences in the mean value of the

concentrate for various mineral and froth class combinations, using Welch’s

t-test.

Class 1 Class 2 PGM Copper Nickel Iron Sulfur Chromite

A B 99.98 99.94 100.00 99.66 99.99 99.98
A C 93.74 78.45 99.95 97.27 99.48 35.93

A D 83.36 83.45 89.45 98.74 57.68 16.00

B C 100.00 98.42 99.73 99.99 99.65 99.98
B D 99.52 99.32 100.00 99.99 99.99 99.99
C D 96.33 94.50 99.96 41.18 99.69 10.28

The results in Table 5.7 show that a simple model based solely on the classification of the

flotation froth can account for between 46% and 83% of the variation in the concentrate

grade data.

Table 5.7: Adjusted R2 values for fitting a linear model to describe the relationship be-

tween froth class and concentrate grade.

Model PGM Cu Ni Fe S Cr2O4

Froth Class 0.462 0.569 0.833 0.663 0.681 0.924

5.4 Froth Class, Velocity & Concentrate Grade

In this section a combination of froth velocity and froth class measurements is used to

model concentrate grade, to determine if better results can be obtained using multiple

parameters. The concentrate grade is modelled as a function of froth class and froth

velocity. The results show that there are generally no significant relationships relating

the froth class and velocity to the concentrate grade for the platinum data set. Figure 5.7
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shows the results for modelling the copper grade. These results are typical of the other

assays, the rest of which can be seen in Appendix G.
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(a) Froth Class ‘A’.
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(c) Froth Class ‘C’.
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(d) Froth Class ‘D’.

Figure 5.7: Relationship between froth class, froth velocity and concentrate grade for the

platinum data set.

Due to the short nature of the test work campaign, there is only a narrow range of veloc-

ities associated with each froth class. This is the likely reason for not observing trends

relating the froth velocity to concentrate grade for the different froth classes.

Another limitation which prevents the determination of any significant relationship be-

tween froth velocity, froth class, and concentrate grade is the limited number of data

points associated with each froth class. The results from this analysis should therefore be

considered inconclusive, with further tests being required to determine if a relationship

exists. These tests would need to ensure that both more samples are collected and that a

greater range of froth velocities are sampled for the different froth classes.
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5.5 Bubble Size, Velocity & Concentrate Grade

Another possible combination of froth surface descriptors for modelling the concentrate

grade is that of bubble size and froth velocity. When a linear model based on these two

measurements is used to model the concentrate grade, the results show that the addition

of the bubble size parameter only carries a significance of 45.8% (ie. not significant), as

shown is in Table 5.8. The resultant model has not been plotted in a figure because of the

difficulty of plotting a multiple linear regression model in two dimensions.

Table 5.8: Summary of the significance of independent variables for modelling concen-

trate grade as a linear function of mean bubble size and velocity.

Model Parameter Significance

Intercept 91.6

Mean Bubble Size 45.8

Froth Velocity 95.6

These results are not in agreement with those presented in Section 5.2, which show that

a significant relationship exists between bubble size and concentrate grade. This discrep-

ancy occurs because the bubble size and velocity measurements are co-linear, as is seen

in Figure 5.8. The co-linearity between bubble size and froth velocity means that the two

model parameters are not independent (a requirement for linear regression models) and

explains why the addition of the bubble size measurement does not add any new informa-

tion to the regression model.

The most likely reason for the co-linearity of the two measurements is the short duration

of the test campaign, where adjustments were made to the froth depth in order to change

the visible top-of-froth state. Although it is possible that there bubble size and froth

velocity are always co-linear, it is suspected that the short duration and execution of the

test campaign are the main contributing factors.

163



Chapter 5: Machine Vision Performance Relationships – Platinum Data Set

10
1

10
2

10
3

10

20

30

40

50

60

70

80

F
ro

th
 V

el
oc

ity
 [p

ix
el

s/
s]

Mean Bubble Size [pixels2]

Figure 5.8: Co-linear relationship between froth velocity and mean bubble size for the

platinum data set.
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5.6 Feed Grade

This section examines the relationships between the feed to the cell and the froth class

observed by the machine vision system. The reason for examining the feed is twofold:

firstly, it is important to see if the cell performance is correlated with the feed, and sec-

ondly, to explore the potential that the froth class can provide information about the feed

to the cell.

Figure 5.9 show the observed relationships between froth classes and feed grade of the

cells being monitored. Table 5.9 shows the results of t-test calculations to determine

whether the observed values for the different froth classes are statistically different from

one another. Froth classes with statistically different mean values are identified by bold

text.

Table 5.9: Summary of the statistical confidence of differences in the mean value of the

feed for various mineral and froth class combinations using Welch’s t-test.

Class 1 Class 2 PGM Copper Nickel Iron Sulfur Chromite

A B 38.05 63.75 38.40 87.99 18.16 62.31

A C 50.70 44.32 4.56 43.39 55.85 90.46

A D 71.72 89.20 94.02 68.93 90.78 43.05

B C 76.86 78.20 37.53 99.97 48.05 99.79
B D 87.62 92.89 88.56 17.03 84.88 1.78

C D 33.89 62.35 94.43 89.94 17.07 91.39

Except for the iron and chromite for classes ‘B’ and ‘C’, there is no statistical difference

between the mean values of the different froth classes. This means that the variations seen

in the concentrate grade are not a function of the feed to the flotation cell.

Figure 5.10 shows the relationship between the p80 bubble size and the feed to the flota-

tion cell being monitored. As is the case for the froth classes, no significant relationship

relates the p80 bubble size to the feed assay values, indicating the froth bubble size is not

dependent on the assay grade of the feed.

The froth class and bubble size variations are therefore likely to have arisen as a result

of feed independent conditions (such as air, level, reagents, etc.), and they can probably

be manipulated by adjusting these conditions. How specific froth class/bubble size com-

binations can be achieved by manipulating these parameters is beyond the scope of this

thesis.
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Figure 5.9: Relationships between froth class and normalised feed grade for the platinum

data set. (Note that although there appears to be different numbers of samples

in some of the graphs, this is not the case. Some of the samples have the same

assay values.)
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Figure 5.10: Relationships between p80 bubble size and normalised feed grade for the

platinum data set.
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These results indicate that the observed froth classes (or p80 bubble size) are not a func-

tion of the feed, but are in fact a measure of the performance (concentrate grade) of the

flotation cell.

5.7 Summary & Discussion

The results presented in this chapter have shown that relationships exist between:

• froth velocity and concentrate grade

• froth bubble size and concentrate grade

• froth class and concentrate grade.

The relationships between froth velocity and concentrate grade and froth bubble size and

concentrate grade have been show to be best modelled with a non-linear function of the

form

y = a xb + c.

For the relationship between the froth classes and concentrate grade, a linear model has

been shown to be sufficient.

The results from this chapter are summarised in Table 5.10. It shows the adjusted R2

values for each of the variables used to model the concentrate grade of the platinum data

set. It is evident that by using a combination of froth velocity and froth class it is possible

to account for the greatest percentage of the variation seen in the concentrate grade. This

is true for all except for the iron assay, where the bubble size accounts for an additional

4% of the variation.

Table 5.10: Adjusted R2 values for fitting various models to concentrate grade.

Model PGM Cu Ni Fe S Cr2O4

Froth Velocity (Linear) 0.484 0.550 0.538 0.530 0.515 0.770

Froth Velocity (Non-Linear) 0.645 0.642 0.519 0.521 0.511 0.798

Bubble Size (Linear) 0.330 0.356 0.205 0.630 0.195 0.451

Bubble Size (Non-Linear) 0.369 0.367 0.349 0.702 0.105 0.711

Froth Class (Linear) 0.462 0.569 0.833 0.663 0.681 0.924
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The results from the direct combination of froth velocity and froth class show no im-

provement to the model relating these measurements to concentrate grade. It is suspected

that the reason for this is largely due to the limited nature of the data set, which does not

have a sufficiently large range of froth velocities for the different froth classes. However,

there are indications (see Figure 5.7d) that with more data the combination of these two

measurements could explain an even greater percentage of the variation in the data.

Analysis of the feed to the flotation cell has discovered no significant relationship between

the feed and the froth class present on the surface. Further analysis shows no significant

relationship between the feed to the flotation cell and the mean bubble size.

The results suggest that the observed relationships can be used by plant personnel to

improve the performance (grade) of the flotation cell. By making the appropriate adjust-

ments, the flotation cell’s froth velocity and froth class can be changed so that it operates

in an optimal regime (froth class and velocity combination).

Although the models presented do not account for all of the scatter seen in the concentrate

data for the platinum data set, it is important to realise that it is the mean concentrate grade

value under a specific regime that is important. This is largely due to the combination of

variability in feed and long residence times of the flotation cell. Even if it were possible to

account for all of the variation seen in the data, it would not be possible to make changes

to the flotation cell quickly enough to ensure that optimal performance is achieved. In fact,

it is likely that if such rapid changes to the process parameters (air, level and reagents)

were made the result would be an unstable operation of the flotation cell, with decreased

performance.
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Chapter 6

Machine Vision Performance
Relationships – Molybdenum Data Set

This chapter presents the results from test work carried out on the molybdenum circuit at

Kennecott Utah Copper Concentrator in February 2006. The chapter continues to address

the fourth objective this thesis: to show that a relationship exists between machine vision

measurements and the metallurgical performance (grade), and that this relationship can

be readily utilised by industrial operations.

The chapter begins by presenting and discussing the observed relationship between the

froth velocity and concentrate grade for the molybdenum data set. Next, it discusses why

it is not feasible to make accurate bubble size measurements for the flotation froths in

the molybdenum data set. Texture measures are presented as an appropriate alternative

measurement to use when accurate bubble size measurements cannot be made. Next, the

observed relationships between the froth classes (based on texture measurements), froth

velocity, and the concentrate grade are presented.

Finally, the observed relationships between the froth classes, feed, and process operat-

ing conditions are presented and discussed. The chapter ends with a discussion on the

observed relationships between the machine vision measurements and the concentrate

grade, and suggests how the results may be used to improve the performance of industrial

flotation cell operation.
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6.1 Froth Velocity & Concentrate Grade

A linear regression model was used to model the concentrate grade using the froth velocity

as the independent parameter. Figure 6.1 shows the observed relationships between froth

velocity and the assay values of the concentrate. No significant relationship between froth

velocity and magnesium oxide grade was found.
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Figure 6.1: Results showing the observed relationships between froth velocity and con-

centrate assay values with linear models fitted.

Analysis of the residuals of these linear models reveals that the residuals for the copper

model are not normally distributed. This means that the assumptions under which the

model is based are invalid. Similar problems occur for the molybdenum disulfide model,

which has decreasing residual values with increasing froth velocity. These results show

that the observed relationship should be disregarded and suggest that a non-linear model
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may be more appropriate for explaining the relationship. The plots of residuals for all of

the trends shown in Figure 6.1 can be found in Appendix E.

As in Chapter 5, a non-linear power model of the form

y = a xb + c

was used to model the relationship between the froth velocity and the concentrate grade.

The results are shown in Figure 6.2.
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Figure 6.2: Results showing the observed relationships between froth velocity and con-

centrate assay values with non-linear models fitted.

A summary of the adjusted R2 values for both the linear and non-linear models is shown

in Table 6.1.
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Table 6.1: Adjusted R2 values when froth velocity is used to model the concentrate grade.

Cu Fe MgO MoS2

Linear Model 0.392 0.589 0.027 0.437
Non-Linear Model 0.383 0.585 0.103 0.435

It is evident from these results that the non-linear model does not differ greatly from

the linear model. In fact, the non-linear model has an almost linear relationship for the

range of froth velocities measured. Furthermore, the adjusted R2 values for the non-linear

models are generally lower than those of the linear models. This is a consequence of an

increase in the degrees of freedom in the model with no substantial increase in the amount

of variability in the data being accounted for. Froth velocity alone is not particularly suited

to the modelling of concentrate grade, and a combination of measurements might perform

better.

6.2 Bubble Size Measurement

Figure 6.3 shows four example images from the video footage collected from the molyb-

denum third rougher cell. Visual inspection of the molybdenum froth suggests that it is

ill-suited to being segmented using the watershed algorithm (or most available bubble size

measurements for that matter). One of the images (Figure 6.3a) is suitable for segmen-

tation. The other three have specific problems which make the accurate measurement of

the bubble size distribution unfeasible. These problems are explained below.

6.2.1 Visible Pulp Areas

Some of the froth images have areas which contain not bubbles but pulp (Figure 6.3b

and 6.3c). Since the watershed algorithm is designed for flotation froths which consist

only of bubbles, it is expected that these regions of pulp will result in poor segmentation

of the molybdenum froth images. Other froth segmentation algorithms which also rely

on gradient based methods [21, 72, 73] will give poor results for the same reason. This is

further complicated by the fact that the pulp areas reflect light and appear as highlights.
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(a) Froth well suited to watershed seg-

mentation.

(b) Froth with visible areas of pulp

(c) Froth with visible areas of pulp and

motion blur

(d) Transparent Froth

Figure 6.3: Sample images of different froth conditions which can be difficult to segment.

This is a problem because the gradient based methods assume that the highlights in the

image are the centres of individual bubbles (see Chapter 3 for details on the watershed

algorithm).

6.2.2 Motion Blur

Figure 6.3c illustrates the problem of motion blur. Because of the small size of the bubbles

on the molybdenum circuit and their relatively high froth velocity, motion blur occurs.

This blurring prevents the watershed algorithm from providing an accurate bubble size

distribution of the froth. While the blurring could be reduced by using improved camera

and lighting systems, it is important to note that it is a limitation of the data set which is

used in this thesis.

175



Chapter 6: Machine Vision Performance Relationships – Molybdenum Data Set

6.2.3 Transparent Froth

The final problem is that certain flotation froths are sometimes transparent in nature.

This transparent nature of the bubbles is not immediately obvious from still images (Fig-

ure 6.3d), but is evident when they are directly observed. Such froths are also unsuitable

for segmentation using the watershed algorithm (or other gradient based methods) as it

relies on a decreasing greyscale value from the bubble highlight to the bubble boundary.

A smooth gradient does not exist for the bubble images in froths such as this: it is possible

to see the second layer of bubbles underneath the top layer, which results in an irregular

profile from the centre to the edge of the bubbles in the image.

The problem of transparent froth is not limited to the molybdenum data set. It is known

to occur in other flotation systems as well. Figure 6.4 shows an example from the froth

image data set presented in Chapter 3. Figure 6.5 shows the typical greyscale profiles

through a bubble for a transparent and an opaque froth.

Figure 6.4: An example image of a transparent froth from a phosphate concentrator.

6.2.4 Poor Segmentation Results

Figure 6.6 shows the results of an attempt to segment the images in Figure 6.3 using the

watershed algorithm. It is evident that the watershed algorithm does not perform well at

segmenting the bubbles in the molybdenum data set. This is because numerous individ-

ual bubbles have been erroneously over-segmented into multiple regions, collections of

tiny bubbles are under-segmented, and areas of pulp are over-segmented and erroneously

combined with individual bubbles.

176



Chapter 6: Machine Vision Performance Relationships – Molybdenum Data Set

(a) (b)

Figure 6.5: (a) Typical profile of a bubble in a transparent froth. (b) Typical profile of a

bubble in an opaque froth.

Figure 6.6: Attempted watershed segmentation of the images in Figure 6.3.

6.3 Texture Measures for Froth Identification

As shown in the previous section, accurate bubble size measurements are not possible for

the molybdenum data set. Texture is an alternative measure which is related to the bubble

size distribution for flotation froths. In fact, previous researchers [50] have shown that it
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is possible to estimate the mean bubble size of a flotation froth using the combination of

a non-linear model and appropriate texture measurements.

Texture measures alone typically take the form of multidimensional data which are often

difficult to interpret as they do not directly represent any obvious physical characteristics

of the image they were calculated from. For this reason, researchers typically use the

texture measurements to identify the froth as belonging to one of a set of froth classes [31,

42, 50, 52].

Chapter 4 has shown which texture measures are suited to the identification of flotation

froth classes. Results of similar tests are presented here to see if the best texture measures

for the molybdenum data set are consistent with the results in Chapter 4. To achieve this,

two different classification methods are used to both train and test a variety of texture

measures on the molybdenum data set.

The first classifier used is a k nearest neighbour classifier (KNN) and the second a Gaus-

sian mixture model (GMM) classifier. For details of the classification methods the reader

is referred to Section 3.6. The reasoning behind choosing these two classifiers is that they

represent two different approaches, the KNN requiring large amounts of training data to

be kept for the classification stage, and the GMM having reduced the training data to a

minimal data model.

The best performance data is summarised in Table 6.2. For an in-depth view of the results

showing the classification performance for the classifier using different numbers of neigh-

bours and Gaussian centres, see Appendix D. From these results it is clear that a number

of texture measures can be used to achieve very high (> 95%) classification results for the

molybdenum data set. The Fourier ring method achieves the best classification results.

Example images of the four different froth classes which can be successfully identified

using texture measures are shown in Figure 6.7. The border colours of the different froth

class images are consistent with the colours used to present the observed relationships

between the froth classes and concentrate grade, feed grade, and process conditions later

in the chapter.

Thus, despite not being able to accurately measure the bubble size distribution of the

flotation froths, it is possible to classify the froths according to texture measures which

give an indirect measure of the bubble size.
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Table 6.2: Results from classification of molybdenum data set using a variety of texture

measures.

Texture GMM Classification KNN Classification

Measure Results Results

Fourier rings 99.52 99.71

Texture spectrum 97.28 98.09

Laws’ filter masks 96.72 98.70

Gabor filters 96.56 97.83

Autoregressive 95.93 98.42

GSCOM 90.36 93.78

Statistics 83.19 94.20

Figure 6.7: Sample images of the different froth classes that can be identified using texture

measures.

6.4 Froth Class & Concentrate Grade

It has been shown that the froth velocity measurement accounts for 39%, 59% and 44%

of the variation in the copper, iron and molybdenum disulfide in the concentrate grade
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respectively. This section presents the observed relationship between the froth class and

the concentrate grade of the flotation cell being monitored, to determine if the froth class

is better able to account for the variability observed in the concentrate grade data.

Figure 6.8 shows the observed relationships between the froth classes and the concentrate

grade of the flotation cell. Table 6.3 shows the mean assay values from the results shown

in Figure 6.8. Table 6.4 gives the statistical confidence that there is a true difference

between the mean values of the froth classes for each of the assays performed (calculated

using Welch’s t-test for samples with unequal variances). Values which have greater than

95% confidence of different mean values are highlighted.

A B C D
0

2

4

6

8

10

C
op

pe
r 

[C
u]

 C
on

ce
nt

ra
te

 G
ra

de

Froth Class

Std Err: 1.341
Adj R2: 0.684
R2: 0.703

A B C D
0

2

4

6

8

10

Ir
on

 [F
e]

 C
on

ce
nt

ra
te

 G
ra

de

Froth Class

Std Err: 1.255
Adj R2: 0.691
R2: 0.710

A B C D
0

2

4

6

8

10

12

14

16

18

M
ag

ne
si

um
 O

xi
de

 [M
gO

]
C

on
ce

nt
ra

te
 G

ra
de

Froth Class

Std Err: 1.821
Adj R2: 0.224
R2: 0.270

A B C D
0

20

40

60

80

100

M
ol

yb
de

nu
m

 D
is

ul
fid

e 
[M

oS
2]

C
on

ce
nt

ra
te

 G
ra

de

Froth Class

Std Err: 12.310
Adj R2: 0.676
R2: 0.696

Figure 6.8: Results showing the observed relationships between froth classes and concen-

trate assay values.
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Table 6.3: Mean values of the concentrate grade for the molybdenum froth classes.

Froth Class Copper Iron Magnesium Molybdenum

A 2.37 3.07 36.72 50.87

B 6.93 6.79 65.01 14.75

C 6.05 7.3 60.39 12.61

D 4.41 3.89 31.47 46.71

Despite some scatter and overlap in the concentrate grades for the different froth classes,

the results are positive. When a linear model of the form

y = β0 + γ1C1 + γ2C2 + γ3C3 + ε

is used to relate the froth class to the concentrate grade data there is a substantial im-

provement in the amount of variation in the data which is explained by the model. The

R2, adjusted R2, and standard error values for the model fits are shown in the top left cor-

ner of each of the graphs in Figure 6.8. Over 67% of the variation in the data is explained

for the copper, iron and molybdenum disulfide grade values, an average improvement of

21% when compared to using froth velocity to model the concentrate grade.

The results are further validated by the results presented in Table 6.4, which show that for

most of the combinations of froth classes there is a statistically significant difference in

the mean value of the concentrate grade assays. This means that it is possible to improve

the performance of the flotation cell being monitored by ensuring that it operates under

the desired froth class. The task of determining which froth class is most desirable is best

done by an experienced metallurgist, by analysing the positive and negative contributions

of each of the elements in the assays reporting to the final concentrate. A summary of the

Table 6.4: Summary of the statistical confidence of differences in the mean value of the

concentrate for different froth classes and assays using Welch’s t-test.

Class 1 Class 2
Copper Iron Magnesium Molybdenum

Conf. of Diff. Conf. of Diff. Conf. of Diff. Conf. of Diff.

A B 100.0 100.0 99.6 100.0
A C 100.0 100.0 93.5 100.0
A D 99.3 89.3 97.0 59.8

B C 76.8 59.0 100.0 74.2

B D 99.2 99.9 40.8 100.0
C D 98.3 100.0 99.9 100.0
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adjusted R2 values when froth classes are used to model the concentrate grade is shown

in Table 6.5.

Table 6.5: Adjusted R2 values when froth classes used to model the concentrate grade of

the molybdenum data set.

Cu Fe MgO MoS2

Adjusted R2 0.684 0.691 0.224 0.676

6.5 Froth Class, Velocity & Concentrate Grade

As an alternative to using a single machine measurement to model the concentrate grade

of the molybdenum data set, this section presents the results when both froth class and

froth velocity measurements are used to model the concentrate grade. A model of the

form

y = β0 + β1X + γ1C1 + γ2C2 + γ3C3 + ε

is used to relate the froth class and froth velocity to the concentrate grade data, where βi

and γi are the regression coefficients, Ci are indicator variables that represent the froth

classes, X is the froth velocity, and ε is the residual error in the model [10].

The observed relationships are shown in Figures 6.9 to 6.12, with the different coloured

sub-figures showing the velocity/concentrate relationship for each of the froth classes. It

is evident from the results that for froth classes ‘A’ and ‘B’ statistically significant linear

relationships relate the froth velocity to the concentrate grade, while for froth classes ‘C’

and ‘D’ such relationships cannot be confirmed. The most likely explanation is that the

data set in use is limited. It is evident from the results that for froth classes ‘C’ and ‘D’

there is not much variation in the froth velocity data. It is possible that linear relationships

do exist relating the froth velocity to the concentrate grade for these froth classes as well,

but further testing over a broader range of velocities is required to confirm this.

A further point of interest is that the relationships relating the froth velocity to the con-

centrate grade are significantly different for each of the froth classes. Results from a set

of statistical tests to determine if the models were statistically different from one another

are shown in Table 6.6 (values greater than 95% confidence have been highlighted). Dif-
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(a) Froth Class ‘A’.
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(b) Froth Class ‘B’.
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(c) Froth Class ‘C’.
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Figure 6.9: Results showing the observed relationships between froth class, velocity and

copper concentrate grade.

183



Chapter 6: Machine Vision Performance Relationships – Molybdenum Data Set

0 50 100 150
0

2

4

6

8

10

12

14

Froth Velocity [mm/sec]

Ir
on

 [F
e]

R Squared: 0.492
Adj R Squared: 0.469
Standard Error: 0.752
Significance: 99.99 %Individual Samples

Regression Line
Regression Confidence Limits
Sample Confidence Limits

(a) Froth Class ‘A’.
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(b) Froth Class ‘B’.
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(c) Froth Class ‘C’.
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Figure 6.10: Results showing the observed relationships between froth class, velocity and

iron concentrate grade.
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(a) Froth Class ‘A’.
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(b) Froth Class ‘B’.
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(c) Froth Class ‘C’.
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Figure 6.11: Results showing the observed relationships between froth class, velocity and

magnesium oxide concentrate grade.

185



Chapter 6: Machine Vision Performance Relationships – Molybdenum Data Set

0 50 100 150
0

20

40

60

80

100

120

Froth Velocity [mm/sec]

M
ol

yb
de

nu
m

 D
is

ul
fid

e 
[M

oS
2]

R Squared: 0.521
Adj R Squared: 0.500
Standard Error: 11.780
Significance: 99.99 %Individual Samples

Regression Line
Regression Confidence Limits
Sample Confidence Limits

(a) Froth Class ‘A’.
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(b) Froth Class ‘B’.
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(c) Froth Class ‘C’.
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Figure 6.12: Results showing the observed relationships between froth class, velocity and

molybdenum disulphide concentrate grade.
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ferences in the regression models are tested by determining if the models have the same

slope, intercept, and mean value in a statistical sense. If any one of these values is differ-

ent, it means that the regression models are statistically different from one another. The

final column of Table 6.6 is most important, as it shows the confidence in the regression

models being statistically different. It is evident that this is the case for most of the froth

class and assay combinations. These results suggest that the combination of froth velocity

and froth class will account for more of the variation seen in the data than any one of the

measurements alone.

Table 6.6: Summary of the statistical confidence of differences in the froth velocity –

concentrate grade models for the molybdenum data set.

Froth Froth Confidence of Confidence of Confidence of Confidence of

Assay Class Class Difference Difference Difference Difference

1 2 in Slope in Intercept in Mean (Overall)

Copper

A B 100.00 100.00 100.00 100.00
A C 6.14 99.95 99.97 99.97
A D 4.24 100.00 100.00 100.00
B C 94.67 100.00 100.00 100.00
B D 33.08 82.96 90.84 90.84

C D 2.20 40.65 69.50 69.50

Iron

A B 3.03 100.00 100.00 100.00
A C 25.27 57.23 77.88 77.88

A D 1.60 4.02 51.92 51.92

B C 98.30 100.00 100.00 100.00
B D 18.67 99.57 99.75 99.75
C D 87.44 100.00 100.00 100.00

Magnesium

A B 4.40 16.43 57.86 57.86

A C 52.32 100.00 100.00 100.00
A D 99.97 99.58 99.99 99.99
B C 18.37 99.95 99.97 99.97
B D 65.10 100.00 100.00 100.00
C D 100.00 98.98 99.93 100.00

Molybdenum

A B 1.67 100.00 100.00 100.00
A C 10.57 99.40 99.60 99.60
A D 99.94 100.00 100.00 100.00
B C 9.11 98.32 98.89 98.89
B D 90.23 19.67 60.14 90.23

C D 38.91 100.00 100.00 100.00
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The R2, adjusted R2, and standard error values presented in Figures 6.9 to 6.12 are for the

froth class specific regression models. Table 6.7 shows the adjusted R2 values when the

complete model is used to relate froth class, froth velocity, and concentrate grade.

Table 6.7: Adjusted R2 values when froth classes and velocity are used to model the con-

centrate grade of the molybdenum data set.

Cu Fe MgO MoS2

Adjusted R2 0.917 0.899 0.545 0.839

The results show that the combination of froth class and velocity far outperform the use of

either of these measurements on their own to model the concentrate grade. Almost 90%

of the variation in the data can be accounted for in the copper and iron assays, and over

80% of the variation can be accounted for in the molybdenum disulfide assay.

6.6 Feed versus Froth Class

It is possible that the variations seen in the concentrate grade as a function of froth class

are in fact caused by changes in the feed rather than changes in the operation of the cell

being monitored. In order to determine if this the case, it is necessary to determine if

a relationship exists between the feed to the flotation cell and the froth classes that are

identified at the time of sampling.

If no such relationship exists between the froth class and the feed, then one can be sure that

the relationship between the froth velocity, froth class, and concentrate grade presented

in the previous section can be readily used to improve the operation of the flotation cell

being monitored.

However, if there is a relationship between the feed to the flotation cell and the froth class,

it means that it may not be possible to stay in the desired optimal froth class by making

changes to the operating conditions of the flotation cell alone. In such cases, the froth

class information may be used to detect changes in the feed. Personnel can be notified of

such changes and make adjustments to the operating conditions (air flow rate, froth depth,

reagent dosage) which are optimal for the type of feed related to the identified froth class.
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Figure 6.13 shows the observed relationship between the feed to the flotation cell and the

froth classes. Data points to the left hand side of the dotted line are from the left hand

y-axis, and data points to the right hand side of the dotted line correspond to the right hand

y-axis. The data points indicate the mean assay values of the feed for each of the froth

classes (coloured according to the froth classes shown in Figure 6.7). The bars indicate

the range within which 99% of the values fall.

0

5

10

15

20

25

30

35

40

F
ee

d 
A

ss
ay

 V
al

ue

0

1

2

3

4

5

6

Cu Fe S SiO
2

Al
2
O

3
As MgO MoS

2

F
ee

d 
A

ss
ay

 V
al

ue
Figure 6.13: Relationship between froth classes and feed to the flotation cell.

From these results, it is evident that the froth class does not give an indication of the feed

to the cell with the exception of froth class ‘D’ (green). Froth class ‘D’ has higher than

normal (froth class ‘A’, ‘B’, ‘C’) copper and aluminium grades. The fact that there is no

major difference between the feeds of the different froth classes indicates that froth class

information can be used to move from one class to another (with the exception of froth

class ‘D’). Plant personnel can therefore make the appropriate adjustments to move to the

desired froth class when the flotation cell is in the ‘A’, ‘B’ or ‘C’ regime. On the other

hand, when froth class ‘D’ is present, the plant personnel will know that this is a result of

a change to the feed in the flotation cell and that different corrective action is required.
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6.7 Process Conditions versus Froth Class

In order to determine how best to operate a flotation cell being monitored by a machine

vision system, it is necessary to determine if there is any relationship between the process

conditions (air flow rate, froth depth, reagent addition, etc.) of the flotation cell and the

machine vision measurements. If such relationships do exist, they can be readily used in

conjunction with the machine vision measurements to optimise the performance of the

flotation cell being monitored.

Figure 6.14 shows the observed relationships between the process conditions of the flota-

tion cell and the froth classes from the molybdenum data set. The data points indicate the

mean values for a given process condition, while the bars indicate the region into which

99% of the measurements fall. Data points to the left of the dotted line should be read off

the left vertical axis and data points to the right of the dotted line should be read off the

right hand vertical axis. The units of the vertical axes are shown in square brackets under

the corresponding measurements on the horizontal axis.
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Figure 6.14: Relationship between froth classes and process conditions of the flotation

cell.

It is clear that there are considerable differences between the process conditions of the

different froth classes. Class ‘A’ (black) has wide ranges of operation for most of the
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process conditions. This suggests that there is no guaranteed easy way to move the froth

class into this state. The most viable way to achieve a class ‘A’ froth appears to be by

increasing the froth depth of the flotation cell.

Other froth classes (such as class ‘D’ (green)) have much more isolated process condi-

tions. This suggests that by making the appropriate changes to the process conditions the

flotation cell could be made to exhibit a class ‘D’ froth. There are, however, numerous

conditions which could be changed and it is not clear from the limited data presented here

which adjustments should be made to generate a class ‘D’ froth. The results suggest that

a likely way is by decreasing the percent solids to approximately 40% (as this is the only

process condition which has no overlap with the other froth classes).

It is also important to remember that froth class ‘D’ has a higher copper grade in the feed

(see the previous section). This means that it is not yet clear whether it is the percent

solids, the grade of the feed, or a combination of the two which has resulted in froth class

‘D’ being observed. This can only be clarified by performing more test work over a much

longer period.

The results presented in this section have shown that it should be possible to move be-

tween different froth classes by making the appropriate adjustments to the process con-

ditions of the flotation cell. It is not trivial to decouple the effects from the multiple

variables which affect the flotation cells, particularly when a short test work campaign

is performed. Further (long term) work is required to isolate exactly how the different

variables will impact on the observed froth class.

6.8 Summary & Discussion

In this chapter results have been presented for relating machine vision measurements

(froth class and froth velocity) to the concentrate grade of the flotation cell being moni-

tored. These results are summarised in Table 6.8.

For the case where the froth velocity alone is used to model the concentrate grade, re-

sults show that linear models are not appropriate. When a non-linear power model is

fitted to the data, the results are interesting: no additional variation is accounted for, and

the models response is largely linear in the range for which data points were sampled.
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Table 6.8: Summary of standard errors and adjusted R2for predicting copper grade of the

concentrate.

Features Used Copper Iron Magnesium Molybdenum

Froth Velocity (Linear) 0.392 0.589 0.027 0.437

Froth Class 0.684 0.691 0.224 0.676

Froth Class & Velocity 0.917 0.899 0.545 0.839

These results suggest that additional measurements are required to explain the non-linear

variation in the concentrate grade data.

Using bubble size measurements for the molybdenum data set has been shown to be in-

appropriate: it is not always possible to accurately segment the flotation froth images

because the bubbles are sometimes transparent. When this occurs, the assumptions of

the watershed algorithm (and other gradient based bubble delineation algorithms) are vi-

olated, leading to poor segmentations. As an alternative measure to bubble size, texture

measures have been shown to be suitable for identifying different froth classes. Numerous

texture measures have been tested and it has been shown that over 99% correct classifi-

cation can be achieved using Fourier ring based texture measures. Using a linear model,

the texture measures typically account for between 67% and 69% of the variation in the

concentrate grade. This shows that texture measures can be used for the improvement of

the operation of flotation cells.

The combination of froth velocity and froth class information accounts for a much larger

percentage (typically over 20%) of the variation in the data compared to using one of

these parameters to model the concentrate grade of the flotation cell being monitored. For

the copper concentrate grade, over 90% of the variation in the grade can be accounted for

using this simple linear model, while for the iron in the concentrate grade, 89% of the

variation in the data is accounted for.

With the possible exception of froth class ‘D’, the froth classes are not a function of the

feed to the flotation cell. Analysis of the process conditions at the time of operation

suggest that it should be possible to achieve the desired froth class/velocity combination

by making the appropriate adjustments. However, due to the large number of variables

that affect the system it is not clear how best the changes between froth classes are to be

achieved. This is an area where further research is required.
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The combination of an appropriate texture measure, classifier and froth velocity measure

can be used to provide personnel with information related to the concentrate grade of the

cell being monitored. First the class of the current state of the froth is identified. Second,

the froth velocity is measured. The combination of these two measurements can then

be used to give an indication of the current concentrate grade of the cell. Based on this

output value, personnel may either decide to leave the current input variable settings (air

flow rate, froth depth, reagent dosage) or make changes to achieve better performance.

The determination of the optimal froth class and velocity regime to operate in is best made

by experienced metallurgists, as it will typically involve numerous tradeoffs relating to

the concentrate grade of both desirable and undesirable minerals. This should be readily

achievable by analysis of the different froth class/velocity responses (Figures 6.9 to 6.12).

How best to manipulate process conditions to ensure that an optimal froth class is present

on a flotation cell is a difficult problem that requires more research before a set of sys-

tematic approaches can be developed. The results presented here give some indications

of how this may be achieved. However, the limited number of samples, coupled with a

high number of process variables makes it difficult to come to any conclusion with a high

degree of certainty.

While the same concentrate grade can be achieved under different froth class/velocity

regimes, this in no way means that the approach used is inappropriate. While it would be

useful to have the different froth class-velocity responses having no overlap, it is unlikely

that this would be the case: a large number of variables all interact to cause the final

concentrate grade. It is likely that different combinations of the these variables can give

rise to the same concentrate grade. In the same way, it is likely that different combinations

will result in different froth classes being observed, and that at different froth velocities

the same concentrate grade can be achieved.
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Chapter 7

Machine Vision Performance
Relationships – Copper 2006 Data Set

As has been the case for the previous chapters, this chapter addresses objective num-

ber four of the thesis, namely to show that a relationship exists between machine vision

measurements and the metallurgical performance (grade) which can readily be used by

industrial operations. In this chapter, data will be presented from test work carried out

on the copper circuit at Kennecott Utah Copper Concentrator in January 2006. For more

details on the data set, see Section 3.15.

The chapter begins by presenting the observed relationship between froth velocity and

concentrate grade. Next the results of using both linear and non-linear models to relate

the bubble size to concentrate grade are discussed. How bubble size measurements can

be used for the classification of froths with dynamic bubble size distributions, which are

needed to characterise the froths in this data set, are presented next. It is then shown

how unsupervised classification techniques can be used to automatically determine froth

classes based on the bubble size measurements. Next, the relationships between the froth

classes and the concentrate grade of the cell being monitored are presented. This is done

for two reasons, to validate the classes determined automatically, and to show how the

froth class identification can provide useful information about the concentrate grade of the

flotation cell. The combination of froth velocity and froth class for modelling concentrate

grade is then presented.
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It is important to note that the classification of froth classes in this chapter is entirely

automatic . This is unlike the previous chapters which have presented results which have

been based on an initial hand classification of the flotation froth videos by experienced

personnel. The potential for bias is therefore minimised, and the method is more efficient

for froth class identification.

7.1 Froth Velocity & Concentrate Grade

As mentioned in previous chapters, froth velocity is typically related to the mass flow rate

of the concentrate and to the grade of the concentrate. A simple linear regression model

was fitted to the froth velocity and assay data. The observed relationships between the

froth velocity and concentrate grade of the flotation cell being monitored on the copper

circuit are shown in Figure 7.1.

The observed trends do not account for a large amount of the variation in the data. Only

49% and 64% of the variation in the copper and iron assay data respectively is accounted

for using the froth velocity. Substantially less variation is accounted for in the magnesium

and molybdenum assays.

The observed trends behave as expected. The increase in velocity results in an increased

amount of material non-selectively reporting to the concentrate via entrainment. This

results in an increased amount of gangue being recovered, which decreases the proportion

of floatable material in the concentrate.

Non-linear models of the form

y = a xb + c

were fitted to the data (see Figure 7.2). The result was a lower adjusted R2 value for most

of the assay values (see Table 7.1) due to an increase in the degrees of freedom with no

additional variation in the data being accounted for (an increase of 0.3% was seen in the

adjusted R2 value for the molybdenum disulfide assay). It is also interesting to note that

the non-linear models show a largely linear response, particularly within the bounds of

the observed froth velocities.
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Figure 7.1: Observed linear relationships between froth velocity and concentrate grade.
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Figure 7.2: Observed non-linear relationships between froth velocity and concentrate

grade.
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This suggests that the use of froth velocity alone to model the concentrate grade is not suf-

ficient. In order to account for more of the variability in the data it is therefore necessary

to use a combination of froth surface descriptors, rather than froth velocity alone.

Table 7.1: Adjusted R2 values for fitting linear and non-linear models to the relationship

between froth velocity and concentrate grade.

Model Cu Fe MgO MoS2

Linear 0.4903 0.6392 0.3828 0.1287

Non-Linear 0.4853 0.6374 0.3802 0.1318

7.2 Bubble Size & Concentrate Grade

As has been shown in Chapter 4, single value froth descriptors are often inappropriate

to use (especially when the flotation froth exhibits a dynamic bubble size distribution).

For completeness, results are presented here showing the observed relationships between

single value bubble size descriptors and the concentrate grade of the flotation cell for the

copper 2006 data set.

As in Chapter 5, it is still necessary to determine which of the single value descriptors

is most appropriate. Both linear and non-linear power models were fitted to a range of

single value bubble size descriptors. The results from these tests are shown in Table 7.2.

Table 7.2: Average adjusted R2 values for fitting linear and non-linear models to the rela-

tionship between various single value bubble size descriptors and concentrate

grade.

Model Mean p50 p60 p70 p80 p90

Linear 0.1297 0.0550 0.0822 0.1033 0.1240 0.1381
Non-Linear 0.1911 0.0793 0.1305 0.1758 0.2153 0.2102

For the linear model the p90 bubble size is best able to account for the variation in the

data, while the p80 bubble size is found to perform the best for the non-linear model. The

resultant linear and non-linear fits when using the p90 and p80 bubble size to model the

concentrate grade for the copper 2006 data set are shown in Figure 7.3 and 7.4.
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It is evident from the results that the linear models are not well suited to capturing the

relationship between the bubble size and the concentrate grade. Residuals tend to cluster

in groups either above or below the regression line, and it is evident by just observing the

data that a non-linear model is more suited to the task. This is confirmed in Table 7.3,

which presents the adjusted R2 values for the linear and non-linear models and shows that

non-linear models perform better.

Table 7.3: Adjusted R2 values for fitting linear and non-linear models to the relationship

between the p90 bubble size and concentrate grade.

Model Cu Fe MgO MoS2

Linear 0.3554 0.0996 0.0839 0.0136

Non-Linear 0.4239 0.1824 0.1784 0.0765
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Figure 7.3: Observed linear relationships between p90 bubble size and concentrate grade.
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Figure 7.4: Observed non-linear power relationships between p90 bubble size and con-

centrate grade.
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7.3 Automatic Classification of Froth Classes using Bub-
ble Size Distributions

In Section 4.3, an algorithm was presented which can automatically detect froth classes

from bubble size distribution data by first characterising the froths according to their bub-

ble size distribution dynamics, and then using an unsupervised clustering algorithm to

cluster the characterised froths into froth classes.

This same method is used here to automatically cluster the data from the copper 2006

data set into froth classes. Unlike the example in Section 4.3, a slightly modified ver-

sion, which allows some user intervention, is presented here. The first step in the learning

process is to identify the bubble size distributions which occur frequently throughout the

entire data set. The froth video sequences are sampled to get a representative sample of

froth images. The bubble size distribution is then calculated for each of these images,

and the bubble size distributions are presented to an unsupervised classification algorithm

(see Section 3.8.2 for details on unsupervised classification). The results from the un-

supervised classification algorithm are shown in Figure 7.5. Figure 7.6 shows example

images of froths with the bubble size distributions shown in Figure 7.5.

At this stage it is possible to characterise video clips of froth as histograms of frequently

occurring bubble size distributions. These characteristic histograms are passed to an un-

supervised clustering algorithm to determine the nine most frequently occurring charac-

teristic histograms. Figure 7.7 shows the resulting nine most frequently occurring charac-

teristic histograms from the copper 2006 data set.

Although one could in principle use the nine output froth classes to determine the links

between froth class and metallurgy for the data set, having such a high number of froth

classes will result in statistically insignificant models relating the froth classes and con-

centrate grade. This is because of the limited number of metallurgical samples in the data

set.

Visual inspection of the characteristic histograms reveals that many are similar to one an-

other (for example Figure 7.7b and 7.7c). From this set of characteristic clusters a subset

of clusters is chosen. This is done in a similar manner to the classification of other froth

data sets by hand. An experienced operator can gauge how visually similar the froths are
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Figure 7.5: Frequently occurring BSDs learnt from 9000 samples.

Figure 7.6: Example images of the froths represented by the cumulative BSDs in Fig-

ure 7.5.
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Figure 7.7: Nine detected characteristic histograms of the copper 2006 data set.
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using the nine characteristic histograms as indicators. From the set of histograms, three

are chosen which best represent the original set of nine. The result is that the characteristic

histograms of Figure 7.7b, 7.7e and 7.7h are chosen as froth classes.

The reason for choosing these specific characteristic histograms is that there are only

a small number of video segments that can be characterised by the histograms in Fig-

ures 7.7a and 7.7i; they are therefore not representative of the data set as a whole. Fur-

thermore, the remaining characteristic histograms have many similarities: the selection of

characteristic histograms b,e and h results in the most representative set of characteristic

histograms for the copper data set.

The individual froth video segments from the data set can now be classified according to

which of these three characteristic histograms they are most similar to. The final set of

characteristic histograms is shown in Figure 7.8. Appendix F contains the characteristic

histograms for each of the samples in the 2006 copper data set.
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Figure 7.8: Final set of three froth class characteristic histograms.
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7.4 Froth Class & Concentrate Grade

Once the flotation images has been classified into froth classes, the class information can

be used as a parameter in modelling concentrate grade. Figure 7.9 shows the observed

relationships between the froth classes and the concentrate grade of the flotation cell being

monitored, while Table 7.4 summarises the adjusted R2 values when froth classes are used

to model the concentrate grade.

The results presented in Figure 7.9 may not appear to be particularly useful, because of

the large degree of overlap between the data from the different froth classes. However,

this is not as big a problem as one might initially expect. It is important to remember

that the mean assay values for the different froth classes and the associated standard error

values are crucial for the correct interpretation of the data. Table 7.5 shows the mean

assay values and standard deviations for the different froth classes identified.

If the mean values of the different froth classes are significantly different from one an-

other, then the froth class information is very useful for the operation of the flotation cell

being monitored. This is the case for the data presented here. Table 7.6 clearly shows

that there is a statistically significant difference in the mean values for the different froth

classes for most of the assay values (values which have significance of over 95% are high-

lighted). This means that it is more beneficial to operate in a froth ‘class C’ than in a ‘class

A’ regime. The benefits are a 70% increase in copper grade and a 26% decrease in the

magnesium oxide grade.

While the results show that there is long term benefit to operating under specific froth

class regimes, the results also show that the froth class information alone is not sufficient

to account for most of the variation seen in the concentrate assay values. The linear model

based of the froth classes alone is able to account for 46% of the variation in the copper

data and only for 26% and 24% of the variation seen in the iron and magnesium oxide

data respectively. Therefore in order to explain more of the variation in the data, and in so

doing to be able to achieve better prediction when the model is used, the use of additional

machine vision surface descriptors in the model is required.
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Figure 7.9: Observed relationships between froth class and concentrate grade.
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Table 7.4: Adjusted R2 values when froth classes are used to model the concentrate grade.

Cu Fe MgO MoS2

Adjusted R2 0.4572 0.2565 0.2423 0.0592

Table 7.5: Mean values of the concentrate grade for the copper froth classes.

Froth Class
Copper Iron Magnesium Molybdenum

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

A 12.99 4.04 20.39 4.40 2.01 0.73 2.13 1.24

B 19.68 3.28 25.66 3.27 1.21 0.50 2.82 1.07

C 22.09 3.67 23.74 3.78 1.48 0.54 2.27 0.39

Table 7.6: Summary of the statistical confidence of differences in the mean value of the

concentrate for various mineral and froth class combinations using Welch’s

t-test.

Class 1 Class 2 Copper Iron Magnesium Molybdenum

A B 100.0 100.0 100.0 98.5
A C 100.0 99.0 99.2 40.7

B C 97.8 93.1 92.6 99.8
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7.5 Froth Class, Velocity & Concentrate Grade

As seen in previous chapters, the combination of froth velocity and froth class measure-

ments have resulted in improved models of the concentrate grade. This section presents

the results of using the combination of froth class and froth velocity to model the concen-

trate grade assays of the copper 2006 data set.

A model of the form

y = β0 + β1X + γ1C1 + γ2C2 + ε

is used to relate the froth class and froth velocity to the concentrate grade data, where

βi and γi are the regression coefficients, and Ci are indicator variables that represent the

froth classes, X is the froth velocity, and ε is the residual error in the model [10].

The results showing the observed relationships are shown in Figures 7.10 to 7.13. It is

evident that a combination of froth class and linear relationship between froth velocity and

concentrate is well suited for modelling the relationship between froth class, velocity, and

concentrate grade. It is also important to note that the adjusted R2 parameters are given

for the linear model relating froth velocity to concentrate grade on a ‘per froth class’ basis.

The actual adjusted R2 values for the entire model are given in Table 7.7. The model is

able to account for over 65% of the variation in the concentrate grade data for both the

copper and the iron assays.

Table 7.7: Adjusted R2 values when froth classes and velocity are used to model the con-

centrate grade.

Cu Fe MgO MoS2

Adjusted R2 0.6758 0.6564 0.4411 0.1323

It is important to note that for each of the assays in Figures 7.10 to 7.13, the observed

regression lines relating froth velocity to concentrate grade for the different froth classes

have different slopes and centres of mass. These results prove that the unsupervised clas-

sification algorithm used in Section 7.3 are real froth classes and not just random allo-

cations. If the froth classes had been random, there would be no statistical differences

between the observed trends. Table 7.8 shows the results from the statistical analysis to

determine whether the observed trends have statistically different regression lines. The
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Figure 7.10: Observed relationships between froth velocity, froth class and concentrate

grade.
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Figure 7.11: Observed relationships between froth velocity, froth class and concentrate

grade.
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(b) Froth Class ‘B’.
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Figure 7.12: Observed relationships between froth velocity, froth class and concentrate

grade.
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Figure 7.13: Observed relationships between froth velocity, froth class and concentrate

grade.
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results show that, in the case of copper grade, the model of combined parameters is statis-

tically significant, with over 65% of the variation in the data being explained by the model.

This indicates that froth class and froth velocity are a particular successful combination

when modelling concentrate grade for the copper 2006 data set.

Table 7.8: Summary of the statistical confidence of differences in the froth velocity - con-

centrate grade models for the copper 2006 data set.

Froth Froth Confidence of Confidence of Confidence of Confidence of

Assay Class Class Difference Difference Difference Difference

A B in Slope in Intercept in Mean (Overall)

Copper

1 2 63.07 99.99 100.00 100.00
1 3 95.30 100.00 100.00 100.00
2 3 94.58 100.00 100.00 100.00

Iron

1 2 37.97 90.30 95.08 95.08
1 3 93.21 9.60 54.94 93.21

2 3 97.73 57.88 79.62 97.73

Magnesium

1 2 2.26 99.27 99.62 99.62
1 3 95.51 65.00 83.39 95.51
2 3 99.34 66.07 84.10 99.34

Molybdenum

1 2 34.41 53.53 76.66 76.66

1 3 2.23 53.10 76.28 76.28

2 3 23.99 87.99 93.88 93.88

7.6 Feed versus Froth Class

As in the previous chapters, the effect of the flotation feed grade on the froth surface

descriptors needs to be examined. It is useful to determine if a relationship exists between

the feed to the flotation cell being observed and the froth classes observed. If there is a

relationship, then it is possible that the froth class is driven by the feed to the flotation cell,

rather than by the process parameters under which the flotation cell is being operated. If

this is the case, then the machine vision system can be used to alert plant personnel when

changes in the feed to the flotation cell (indicated by a change in froth class) has occurred.

The necessary steps can then be made to adjust the process parameters of the flotation cell

to ensure that optimal performance is achieved.
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Figure 7.14 shows the observed relationship between the feed to the flotation cell and the

froth classes. Data points to the left hand side of the dotted line are from the left hand

y-axis, and data points to the right hand side of the dotted line correspond to the right

hand y-axis. The data points indicate the mean assay values of the feed for each of the

froth classes. The bars indicate the range within which 99% of the values fall.
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Figure 7.14: Relationship between froth classes and feed to the flotation cell.

Figure 7.15 shows the observed relationship between the p80 bubble size and the feed to

the flotation cell being monitored.

It is evident from the results that there is no clear relationship between the feed to the

flotation cell and the bubble size or froth class identified. These results also suggest that

it will be possible for operators to move between froth classes by making the appropriate

adjustments as the froth classes are not determined by the feed to the cell.

7.7 Process Conditions versus Froth Class

Figure 7.16 shows the relationships between the froth classes and the process parameters

at the times when the froth classes were present. Data points to the left hand side of the
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Figure 7.15: Relationships between p80 bubble size and feed grade for the copper 2006

data set.
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dotted line are from the left hand y-axis, and data points to the right hand side of the

dotted line correspond to the right hand y-axis. The data points indicate the mean assay

values of the feed for each of the froth classes. The bars indicate the range within which

99% of the values fall. The units of the vertical axes are shown in square brackets under

the corresponding measurements on the horizontal axis.
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Figure 7.16: Relationship between froth classes and the process parameters.

There is substantial overlap between a froth class’s values for most of the parameters.

The exception is the frother dosage, where froth class ‘C’ (blue) has a significantly higher

dosage than the other two classes. This suggests that it might be possible to move into the

froth class ‘C’ regime by increasing frother dosage. It is also interesting to note that this

is the froth class with the highest associated copper concentrate grade. Further testing is

be required to see if this is consistently the case.

Figure 7.17 shows the observed relationship between p80 bubble size and the process

conditions. No relationships are evident.
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Figure 7.17: Relationships between p80 bubble size and process conditions for the copper

2006 data set.
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7.8 Summary & Discussion

The results presented in this chapter have shown that relationships exist between:

• froth velocity and concentrate grade

• froth bubble size and concentrate grade

• froth class and concentrate grade.

Results have shown that when froth velocity is used to model the concentrate grade, a

linear model is sufficient. Results from using a non-linear model do not account for

more variation in the data than the linear model. Furthermore, the best fit non-linear

models tend to have largely linear responses in the ranges where the velocity values were

sampled.

For the single value bubble size measurements, a non-linear relationship exists between

the measurement and the concentrate grade values. The use of non-linear models is more

appropriate as they fit the data better, accounting for more variation in the data. The use

of multiple non-linear models to relate the froth velocity and bubble size measurements

to concentrate grade are beyond the scope of this thesis, and have not been presented.

Techniques for automatically detecting and characterising froth classes from flotation

froths which exhibit dynamic bubble size distributions have been presented. The result-

ing froth classes have been validated by showing that the relationship between the froth

velocity and concentrate grade is statistically significantly different for each of the froth

classes, something which would not occur had the classes been the result of a random

class allocation. This technique allows for the consistent identification of froth classes

in a simple time efficient manner. Classifying froth classes by hand is a time consuming

task and is particularly difficult when the froths being classified have dynamic bubble size

distributions.

The relationship between the froth classes and the concentrate grade has been shown to

account for a greater percentage of the variation seen in the concentrate grade data than

using single value bubble size descriptors when both linear and non-linear models are

used (see Table 7.9).
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The best results are obtained when a combination of froth class and froth velocity are

used to model the concentrate grade. Such models account for over 65% of the variation

seen in the copper and iron concentrate grade. The results also show that the relationship

between froth velocity and concentrate grade is different for each of the froth classes. This

effect provides valuable insight for plant personnel on how to achieve better performance

of the flotation cell being monitored. Under a certain froth class regime, they will be able

to adjust the velocity of the froth so that the desired grade set point can be achieved.

The results from this chapter are summarised in Table 7.9, which shows the adjusted R2

values for each of the variables used to model the concentrate grade of the copper 2006

data set.

Table 7.9: Adjusted R2 values for fitting various models to concentrate grade.

Model Cu Fe MgO MoS2

Froth Velocity (Linear) 0.4903 0.6392 0.3828 0.1287

Froth Velocity (Non-Linear) 0.4853 0.6374 0.3802 0.1318

Bubble Size (Linear) 0.3554 0.0996 0.0839 0.0136

Bubble Size (Non-Linear) 0.4239 0.1824 0.1784 0.0765

Froth Class 0.4572 0.2565 0.2423 0.0592

Froth Class & Velocity 0.6758 0.6564 0.4411 0.1323

Analysis of the feed to the flotation cell at the time of sampling has shown that there is

no significant relationship between the feed assay results and the froth class present or

the bubble size of the flotation froth. This means that machine vision systems will not be

suited to detecting changes in the feed to the flotation cell. It is important to remember,

that the data presented here is the assay values of the feed. These do not completely

describe the feed to the cell. Further research looking at the assays on a size by size and

mineralogical basis could reveal that there is a relationship between these aspects of the

feed to the flotation cell and the froth class observed on the surface. If this is the case,

the froth class identification can also be used to alert the plant personnel to changing feed

conditions and the appropriate corrective action can then be taken.

Analysis of the process conditions at the time of sampling has revealed that froth class

‘C’ occurred when the frother dosage was relatively high. What is interesting to note is

that this observation is not clear in Figure 7.17, which shows the relationship between the

p80 bubble size and the various process conditions. This once again highlights one of the
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advantages of using froth classes instead of single value descriptors to characterise the

bubble size distribution of a flotation froth.

As has already been seen for the molybdenum data set, the metallurgical results for the

copper 2006 data set also show how the identification of froth classes and measurement of

froth velocity can provide plant personnel with valuable information pertaining to the con-

centrate grade of the flotation cell being monitored. It has been shown that it is possible to

identify which froth class has the best metallurgical performance (in terms of concentrate

grade of the desired metal). The machine vision system can be used to identify whether

the flotation cell is operating under the desired conditions or not. In this manner, personnel

can be alerted to undesirable operational conditions and make the necessary adjustments

to improve the performance of the flotation cell.

As has been mention in the discussion section of the previous chapter (Section 6.8), the

fact that different froth class/velocity combinations can give rise to the same concentrate

grade is not unexpected. In fact, it can be of direct benefit to the plant personnel. This

means that there is often a choice of how they can move to the desired concentrate grade

set point. For example, if it is not known how to change between different froth classes,

the froth velocity may be adjusted to achieve the desired results.
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Summary, Conclusions & Further Work

8.1 Summary

The review of the literature on machine vision systems for analysing flotation froths has

revealed a number of items which still need to be addressed before machine vision systems

become a standard feature in froth flotation operations.

8.1.1 Improved Bubble Size Measurement

Until now, the current state of the art bubble size measurement algorithms have been lim-

ited to providing accurate bubble size measurements on flotation froths with homogenous

bubble size distributions only. Analysis of flotation froths with both large and tiny bubbles

present has resulted in poor segmentation results.

An improvement to the watershed algorithm has been developed which enables the ac-

curate determination of froth bubble size distributions when both large and tiny bubbles

are present simultaneously. The new algorithm makes use of a texture based classifier

to determine whether the output blobs from a single pass watershed algorithm have been

successfully identified, or if they are in fact a collection of tiny bubbles which requires

further segmentation. The classifier uses a simple threshold on the contrast feature, de-
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termined from a greyscale co-occurrence matrix. The classification stage’s output is used

to modify the input image such that a second pass of the watershed algorithm can be

performed using different parameters optimised for smaller bubble detection. The modi-

fications to the input image are such that the second stage of watershed processing retains

the correct segmentation from the large bubbles as identified by the first watershed stage.

It is possible to adjust the algorithm so that it has as many stages as desired. Experi-

mentation shows that more than three levels are not useful for images 320×240 pixels in

size.

8.1.2 Characterisation of Froths with Dynamic BSDs

The most effective way to deal with the abundance of information that is present in ac-

curate bubble size distributions has been an important but unexplored area of research.

Typically bubble size distributions are reduced to a single value descriptor such as a mean

or p80 value. Such simplifications of bubble size distribution data are often inappropri-

ate, as too much information is lost. This results in the inability to differentiate between

froths with different bubble size distributions. This is a particular problem for flotation

froths which exhibit dynamic bubble size distributions. For these froths it is imperative

that appropriate data reduction techniques are used. A number of methods for charac-

terising flotation froths with dynamic bubble size distributions have been proposed and

tested. The best of these is the characterisation of flotation froths with a histogram of

their frequently occurring bubble size distributions.

An extension to the characterisation of flotation froths using a histogram of frequently

occurring bubble size distributions has also been presented. In this extension, an unsuper-

vised classification algorithm is used to automatically learn the froth classes from a data

set of flotation froths which exhibit dynamic bubble size distributions. The results of the

algorithm are shown to be true froth classes rather than a random assignment of samples

to froth classes. This is achieved by showing that the relationship between froth velocity

and concentrate grade is statistically different for each of the froth classes.
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8.1.3 Texture Measures for Flotation Froths

Previous researchers have used a number of different texture measures for the classifica-

tion of flotation froth images. However, most of the researchers give no reasons for their

choice of texture measure. This problem is compounded by the fact that most researchers

use data sets a single industrial operation. There are also no freely available databases of

flotation froths on which the variety of texture measures can be tested in order to deter-

mine their efficiency.

A large number of texture measures were tested on a data set that consists of a variety

of flotation froths from a number of different industrial operations. The data set consists

of 18 different froth classes, with a total of 16793 images. The results showed that most

texture measures perform well at discriminating between different froths. Laws’ filter

masks and Gabor filters showed the best results. However, implementation of these tex-

ture features is not always advisable, as their improved performance comes at a cost of

increased processing time. Texture measures based on Fourier rings and texture spectrum

have shown to provide good results while maintaining a simple implementation and the

quick classification of new samples.

8.1.4 Surface Descriptor - Concentrate Grade Relationships

The advanced methodology developed to measure the bubble size and texture of flotation

froths was used to determine the existence of relationships between froth surface descrip-

tors and the concentrate grade of the cell being monitored. Data sets from three different

industrial operations were used to show how machine vision systems can be used when

different types of froth are present.

8.1.4.1 Platinum Data Set

The relationship between froth velocity and concentrate grade was examined. The results

showed that a non-linear power model accounted for more of the variation in the data than

a linear model.
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Analysis of the relationship between single value bubble size measurements and the con-

centrate grade showed that the mean bubble size measurement performed best when linear

models were used and that the p80 measurement performed best when non-linear power

models were used. The results showed that non-linear power models were better suited

to model the concentrate grade, as they explained on average 7% more of the variation in

the data than a linear model.

Analysis of the relationship between the froth classes and the concentrate grade showed

that on average 69% of the variation in the data could be accounted for using froth class

information alone.

The results from tests combining the froth velocity, bubble size and froth class informa-

tion to better explain the variation in the concentrate grade were inconclusive. The results

did not improve the amount of variation in the data that could be explained. There are

two reasons for this result. Firstly, there was not sufficient froth velocity range associated

with each of the froth classes to result in an improved relationships. Secondly, the bub-

ble size and froth velocity measurements were co-linear. This resulted in no significant

improvement when the combination of froth velocity and bubble size were used to model

the concentrate grade.

Examination of the various methods tested showed that the best model fit for the concen-

trate grade could be achieved using one of: froth velocity, froth class, and bubble size

measurements. Froth velocity gave best results for PGM and copper assays, froth class

the best results for the nickel, sulfur and chromite assays, and bubble size measures gave

the best results for the iron assay.

8.1.4.2 Molybdenum Data Set

In the second industrial case study, texture measurements were used to identify froth

classes of a flotation froth for which accurate bubble size measurements were not possible,

because of transparent bubbles. The concentrate grade was modelled as a function of froth

velocity, froth class and the combination of froth velocity and class.

The concentrate grade was modelled as a function of the froth velocity using both linear

and non-linear models. The results showed that neither model was particularly well suited
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to explaining the data. The non-linear model was found to have a largely linear response

for the range of froth velocities sampled. The linear model was found to account for an

average of 36% of the variation in the data, while the non-linear model accounted for an

average of 38% of the variation in the concentrate grade data.

When the concentrate grade was modelled using a linear function of froth class, an av-

erage of 57% of the variation in the data could be accounted for. The addition of froth

velocity to the model, resulted in a further improvement. When the combination of froth

velocity and froth class were used to model the concentrate grade, an average of 80% of

the variation in the concentrate assay data could be accounted for.

Analysis of the feed to the flotation cell at the time of sampling indicates that for one

of the froth classes present there is a statistically significantly higher copper feed grade.

This suggests that froth class information can be used to provide information pertaining

to the feed to the flotation cell. Analysis of the process conditions at the time of sampling

suggests that it may be possible to move between the different froth classes by changing

process conditions. However, due to the high dimensionality of the variables which can

result in the presence of a specific froth class, it is not possible to know if the feed or the

process conditions were the dominant factor that caused a particular froth class. Further

investigations are required to this end.

8.1.4.3 Copper 2006 Data Set

In the final case study, froth class identification is achieved automatically using an un-

supervised clustering algorithm. This is necessary as the flotation froth in this data set

exhibits a dynamic bubble size distribution. However, for the sake of completeness, the

relationship between single value bubble size descriptors and the concentrate grade have

been analysed as well.

As was the case for the molybdenum and platinum data sets, both linear and non-linear

models were used to relate the froth velocity to the concentrate grade. Again, there was

minimal difference between the two models, with the non-linear model having a largely

linear response for the ranges of froth velocity sampled. An average of 41% of the varia-

tion in the copper data could be accounted for using froth velocity alone.

227



Chapter 8: Summary, Conclusions & Further Work

As was the case for the platinum data set, it was necessary to determine which bubble

size measurement is best suited for modelling the concentrate grade. Results showed that

the p90 measurement performed best for linear models, and that the p80 measurement

performed best for non-linear models. Using a non-linear model based on the p80 bubble

size measurement it is possible to account for an average of 20% of the variation in the

data.

When the froth classes (as identified by unsupervised classification techniques) were used

to model the concentrate grade, the result was that an average of 28% of the variation in

the data could be accounted for. The addition of froth velocity to this model, resulted in

further improvement, with an average of 48% of the variation in the data being accounted

for. It is important to note that the results for modelling the molybdenum disulfide grade

of the concentrate were particularly poor, and that this resulted in a substantial lowering

of the average performance (over 65% of the variation in the copper and iron assays can

be explained using the model).

Analysis of the bulk feed assay at the time of sampling showed no relationship between

froth class or bubble size and the feed grade to the flotation cell.

8.1.5 A Unified Approach

The results presented in this thesis have shown that a unified approach can be taken to

modelling the concentrate grade of the flotation froths. For the three industrial case

scenarios presented, the same result has been achieved. The best way (of the methods

tested) to model the concentrate grade is to use a linear model containing froth class
and froth velocity measurements. The results from the 2004 copper data set showing

the relationship between froth class, velocity and concentrate grade have been included in

Appendix I. These results once again confirm the value of using the combination of froth

class and velocity, although it should be noted that the relatively small size of the data set

means that the results should be treated with care.

The manner in which the froth class is detected can vary between different industrial in-

stallations. For some flotation cells, it is possible to classify the flotation froths using

multiple methods. For example, the froth classes in the platinum data set can be identified
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using: single value bubble size descriptors, characteristic histograms for froths with dy-

namic BSDs, or using texture measurements such as Fourier rings. Due to the limitation

of some of the measurement techniques available, it is not always possible to make all of

these measurements. For example, the molybdenum data set needed to be analysed by

texture methods, and the copper 2006 data set needed to be analysed using characteristic

histograms for flotation froths with dynamic BSDs.

The results from the unified approach can be readily used by plant personnel. Although

the relationships are not the same for different flotation cells, the same approach of iden-

tifying froth classes and using them in combination with froth velocity can be used on

different flotation cells. By studying the various froth class/velocity relationships for the

different concentrate assays, it is possible to identify the desired froth class and velocity

set point for the flotation cell to be operated at. The machine vision system can then be

set up to measure both the froth class and froth velocity. These measurements can then be

used to alert the plant personnel when the cell being monitored is not operating under the

desired conditions.

The fact that a unified approach using froth class information for all three industrial data

sets examined has outperformed the other methods tested is a clear indication that the

use of froth classes as an intermediate data reduction technique is appropriate. The in-

troduction of froth classes reduces the high dimensionality of data that needs to be dealt

with, but still provide sufficient information that meaningful results can be achieved for

the modelling of concentrate grade data.
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8.2 Conclusions

This thesis has attempted to address a number of problems associated with machine vision

systems for froth flotation. Methodologies have been presented for the improved bubble

size and texture measurement. Furthermore, relationships between these froth surface

descriptors and the flotation cell’s concentrate grade have been established. In so doing,

the objectives that were set out in Section 2.9 have been met. Specifically:

1. An improved algorithm for bubble identification has been presented. This al-

gorithm makes use of multiple watershed passes and a texture based identifier to

identify tiny bubbles. The result is an algorithm that performs well at identifying

bubbles in flotation froth images even when the images contain both large and tiny

bubbles simultaneously.

2. Flotation froths which exhibit dynamic bubble size distributions have been identi-

fied. Ways of characterising these froths for classification have been discussed and

the method of using histograms of frequently occurring bubble size distributions

has been shown to be an appropriate.

3. Investigations found that Fourier ring and texture spectrum based texture mea-
sures are best suited for the analysis of flotation froths. They achieve good

performance while requiring short processing time to classify new images.

4. Observed trends relating froth class, froth velocity and bubble size measure-
ments to concentrate grade of the cell being monitored have been presented.

These show consistently that the combination of froth class and froth velocity mea-

surements provide valuable information pertaining to the concentrate grade of the

flotation cell.

5. A unified approach of combining froth class and velocity information has been

shown to outperform the use of bubble size, individual froth class, and velocity

measurements for modelling the concentrate grade. This approach can be read-

ily utilised by plant personnel because it is easy to understand and determine the

desired operating point of the flotation cell.

230



Chapter 8: Summary, Conclusions & Further Work

8.3 Further Work

There are numerous possible extensions to the work presented in this thesis. They are

addressed in the following sections, and have been divided into research and development

categories.

8.3.1 Research

8.3.1.1 Fundamental Understanding of Froth Classes

There is a large amount of research that still needs to be performed into understanding

the fundamental links between the froth classes and the interactions within the flotation

cell. At the moment there is limited understanding of the mechanisms that result in the

appearance of the surface of the flotation cell. Understanding these relationships from a

fundamental level will provide valuable information on the causes of the different froth

classes and also provide valuable information on how to move between the different froth

classes.

8.3.1.2 Ore Characteristics

The relationships between froth surface descriptors and ore characteristics have not been

fully examined in this thesis. Further research is required to determine whether relation-

ships exist between ore characteristics such as grind, mineral content, and liberation and

the froth surface descriptors.

8.3.1.3 Utilising Additional Froth Surface Descriptors

Other froth surface descriptors have been developed with the intention of using them to

understand the metallurgical performance of the cell being monitored. Two such mea-

surements which have not been addressed in this thesis are the colour and stability mea-

surements. The analysis of the colour of flotation froths is an area which still requires
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further research to provide robust calibrated information pertaining to the metallurgi-

cal/mineralogical state of the flotation froth being monitored. When such measurements

are available, research into using the combination of froth class, velocity and colour mea-

surements together should be made. Ideally this should be done in such a manner that the

contribution from each of the measurements can be viewed in isolation so as to have a

better understanding of what causes the changes.

8.3.1.4 Predictive Capacity

This thesis has not addressed the predictive capacity of the models examined in previous

chapters. In order for the predictive capacity of these models to be effectively tested, it

is necessary to perform a plant trial of suitably long duration. The trial will need to be

divided into two stages, a training stage, where the best models for relating the froth class

and velocity to concentrate grade are determined, followed by a testing stage, where the

performance of the prediction of the model is compared against the actual concentrate

grade measurements.

8.3.2 Development

8.3.2.1 Robust Software Implementation

The algorithms developed in this thesis are not all readily available in an industrialised so-

lution (although the Fourier ring based texture measure, Gaussian mixture model classifi-

cation system and improved watershed algorithm have been implemented in the industrial

solution). Many of the more advanced algorithms have been prototyped in MATLAB; as

such they typically run offline. It is important that the algorithms developed in this thesis

be rewritten so that they form part of an industrialised machine vision system. This is a

necessary step before any long-term tests can be carried out on an industrial operation.
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8.3.2.2 Robust Hardware Development

Even though a large amount of research has been performed to develop robust machine

vision systems for froth flotation, there are still some hardware problems which need to be

solved. These include the development of solutions to deal with the often uneven lighting

of flotation cells, particularly when they are outdoors; developing ways of transmitting

the large amounts of data associated with machine vision systems across very noisy en-

vironments; and ensuring that the developed hardware is able to withstand the rigours of

industrial operations.

8.3.2.3 Implementation of a Machine Vision System

The observed relationships have shown the advantage of having a machine vision system

to provide useful information on the concentrate grade of the flotation cell. The first step

is to have a metallurgist determine an optimal froth velocity and froth class combination

for the flotation cell being monitored. The machine vision system can then be used to

alert the operator when the flotation cell is not operating under the desired conditions.

8.3.2.4 Machine Vision for Flotation Froth Control

Over time, the operators should develop an understanding of how to move from undesir-

able froth classes to the desirable froth class. When suitable knowledge exists on how to

achieve this, an expert system can be set up to perform closed loop control of the flotation

cell, thus keeping the flotation cell under the desired conditions.
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Appendices

The appendices for this thesis are on the attached DVD disc. A brief summary of the

different appendices is given below.

Appendix A
Appendix A contains the assay values for the industrial data sets.

Appendix B
Appendix B contains video segments and image sequences for each of the samples in the

various data sets.

Appendix C
Appendix C contains the process parameters for the various industrial data sets.

Appendix D
Appendix D contains the classification performance data on the molybdenum data set for

the KNN and GMM classifiers with different sequence length and classifier parameters.

Appendix E
Appendix E contains the plots of residual errors for the statistical analyses relating froth

velocity to concentrate grade.

Appendix F
Appendix F contains the final set of characteristic histograms for the copper 2006 data

set.
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Appendix G
Appendix G contains the froth class/velocity relationships for the platinum data set.

Appendix H
Appendix H contains the complete set of results of the bubble size/concentrate grade

relationships for the platinum data set.

Appendix I
Appendix I contains the froth class, velocity, concentrate grade relationships for the 2004

copper data set.

Appendix J
Appendix J contains the various non-linear models used to explain the froth veloc-

ity/concentrate grade relationship for the platinum data set.
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