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Abstract

Motion based video segmentation is important in many video processing applications such as MPEG4.

This thesis presents an exhaustive, non-causal method to estimate boundaries between moving ob-

jects in a video clip. It make use of tensor voting principles. The tensor voting is adapted to allow

image structure to manifest in the tangential plane of the saliency map. The technique allows direct

estimation of motion vectors from second-order tensor analysis. The tensors make maximal and di-

rect use of the available information by encoding it into the dimensionality of the tensor. The tensor

voting methodology introduces a non-symmetrical voting kernel to allow a measure of voting skew-

ness to be inferred. Skewness is found in the third-order tensor in the direction of the tangential first

eigenvector. This new concept is introduced as the Tensor Skewness Map or TS map. The TS map

gives further information about whether an object is occluding or disoccluding another object. The

information can be used to infer the layering order of the moving objects in the video clip. Matched

filtering and detection are applied to reduce the TS map into occluding and disoccluding detections.

The technique is computationally exhaustive, but may find use in off-line video object segmentation

processes. The use of commercial-off-the-shelf Graphic Processor Units is demonstrated to scale well

to the tensor voting framework, providing the computational speed improvement required to make

the framework realisable on a larger scale and to handle tensor dimensionalities higher than before.
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Chapter 1

Introduction

This chapter gives a brief basic background in image and video segmentation and explains the

motivation to improve and augment the methodologies in the field of moving object segmentation by

using tensor voting strategies. We give an overview of the objectives of the research and indicate the

contribution made by this thesis in the field of moving object segmentation using tensor voting. The

various chapters are summarised to allow selective reading of the thesis and to give the mathematical

conventions and notations used throughout the thesis.

1
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1.1 Overview and motivation

In a video sequence, a human observer can identify a background or backdrop against which the scene

plays out. The human observer is also able to identify several objects in the video scene which move

in relation to the background and each other. They may at times move over each other obscuring

one of the objects giving a sense of depth. Motion itself in the video scene attracts attention as the

observer would most likely focus on that which is moving compared to that which does not.

If the sequence was reduced to a single frame or still shot, the observer would be able to differentiate

objects based on their semantic inference such as knowing what a human looks like and identifying

a human in the frame. Computer vision usually does not have this semantic inference — or at least

it does not form part of low level algorithms — but it is more part of a high level vision problem

[70] or content-based analysis [20]. On a single frame, low level vision usually makes use of high

contrast edges to segment images. Examples of such algorithms are the Canny edge detector [4] and

the watershed algorithm [69]. In highly complex or textured images, these segmentations may bear

little resemblance to actual objects. Another method is to use a form of clustering based on the

image pixel colours to determine the objects [39, 7].

By introducing the other frames of a video sequence, the relative motion of points or areas in the

image can provide good cues to delineate objects. This is referred to as moving object segmentation

and is the focus of this thesis. By being able to separate moving objects in the video sequence, these

objects can be separated allowing the background to be represented as a single image reconstructed

over several frames. This is called a mosaic and has been researched by many authors [5, 29, 52, 54]

as it can be used in video compression by sending the background once, and then superimposing

the moving objects on the background. The remaining moving objects can also benefit from this

process as the rate of change within them is small compared to the object movement rate allowing

better compression. The MPEG4 standard [25, 37] makes use of the moving objects as AV object

data with object motion.

Most moving object approaches make use of the previous frame to determine motion. This thesis

looks at a non-causal approach where frames from both the past and future are used to estimate

moving objects. This type of encoding is suitable for off-line processing of video clips in preparation

for compression. The non-causality usually implies that time is not a factor in estimating the moving

object boundaries. This is also motivated by the extremely rapid growth in computing capability.

The algorithms explored are massively parallel and computationally intensive. This may present a

computational problem now, but not in the future.

A typical application has been researched by Guest [19] where MPEG4 compression methodologies

can be optimised to give better compression for a similar image quality if object boundaries are
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known. This approach allows an object to ”bleed” over a motion boundary. Motion boundaries are

typically very abrupt changes in colour/intensity causing high frequency components in the Direct

Cosine Transform (DCT). By allowing a smooth or gradual intensity variation on the edge, these

components can be made a lot smaller which allows better compression. When decoding the video,

the object boundaries are used to delineate the object once reconstructed, which reinstates the crisp

edge.

There are many motion segmentation techniques using edge techniques, region techniques, combined

edge and region techniques coupled with motion vector estimation. The techniques are either point

based where each pixels motion is estimated (usually using image gradients) or region based where

a Region of Support is used to determine the motion [55]. From these two techniques, motion can

be estimated. The point-based method has the advantage of being able to operate close to motion

boundaries without being affected, but are highly susceptible to noise in the sequence. The region-

based method is far more robust against noise, but lacks the fine resolution required on moving

object boundaries.

An effort to try adjust the region-based method to have a more relevant Region of Support instead

of typically a block of pixels, led to tensor voting techniques pioneered by Medioni and several other

researchers [43, 21, 30, 34, 33, 36, 45, 46, 49, 48, 50, 58, 61, 60, 62, 59, 63, 64, 65, 67, 66]. The tensor

voting techniques provide the baseline from which this thesis develops extensions. The tensor voting

approach is relevant in that it combines association and feature extraction in a single step. It also

has very few parameters that require adjustment making it a unified robust approach.

This thesis aims at presenting a theory which may yield a different approach to motion segmentation,

but does not attempt to finalise this approach. Several examples are explored to indicate the

potential of the techniques developed in the thesis.
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1.2 Research objectives

The thesis objective is to extend the tensor voting framework as applied to motion segmentation.

To do this new algorithms and encoding structures are developed and higher-order tensor analysis

is explored to reveal additional geometric features in a video sequence that have bearing on motion

segmentation.

The objective of not being constrained by the number of adjacent frames (non-causal) in a video

sequence allows the algorithms to be applied to video sequences in an off-line application such as

video compression of pre-recorded material. This currently does occur in the industry where movies

are encoded as efficiently as possible to reduce digital bandwidth on digital TV systems and to

cram as many channels as possible into the available bandwidth. The objective of accurate moving

object segmentation fits in with current compression standards such as MPEG4 [25], but is often

not applied due to the difficulty in doing the segmentation.

With non-causality and accuracy comes the burden of computational load. Algorithms need to look

at more data and information in order to make decisions on segmentation. This thesis allows more

data to enter the algorithms and the objective is to be able to make more-optimal selections of which

data contains information. Of course — this happens for each pixel making it a vast computational

and memory intensive problem.

Within the problem of computation, the thesis research looks at resolving and adapting algorithms

developed on a highly parallel computation engine in the form of a Graphical Processing Unit (GPU)

that is generally available. The research also looks into the segmentation of the algorithm on these

units to allow expandability into the future where GPUs will and already are (i.e. the Nvidia Tesla

architecture and computers) becoming super-computers of the future.
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1.3 Contributions

Although the thesis builds on existing tensor frameworks in the motion segmentation application,

several concepts thought to be novel are introduced.

1. Tangential Voting. In order to fit the idea of motion traces through a spatio-temporal

volume, the tensor voting framework is adapted to allow tangential voting. The normal tensor

voting framework makes use of surface geometric features with normal voting. This concept

is generalised into the N dimensional tensor voting framework.

2. Direct Data Encoding. The pixel and surrounding pixel colour information and relations are

directly encoded into the tensor resulting in high dimensionality. The reason for approaching

the problem with direct encoding is to allow the tensor voting framework to be driven directly

from the data as well as to make data association more selective.

3. Non-Symmetrical Kernel. The normal tensor voting framework voting kernel is adapted

to be asymmetrical. This allows higher-order tensor analysis to reveal other useful geometric

features to be extracted without disturbing the second order geometrical features in use.

4. Tensor Skewness. The third-order tensor geometrical property investigated reveals occluding

and disoccluding properties. These properties allow motion boundaries to be found as well as

giving layering information in the video scene.

In terms of implementation, the algorithms developed need an implementation framework suitable

for high throughput computation. Due to the highly parallel and uncorrelated nature of the tensor

voting framework, a novel Graphic Processing Unit (GPU) implementation for high-dimensional

tensor voting is developed using a commercially available and affordable solution.
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1.4 Thesis organisation

The remainder of Chapter 1 provides the mathematical notations used in the thesis including the

concept of dimensionality, the symbols used and common operations and conventions. It goes on

to define terms concerned with images and video sequences with the concept of colour encoding.

Tensors are introduced and defined in the context of this thesis. The concept of tensors is expanded

to second- and third-order tensors, and the geometric features of second-order tensors are described.

The thesis relies heavily on random numbers, which need to be on unit spheres. The methodology of

obtaining numbers lying on the unit sphere is described and discussed. Lastly, the counter-intuitive

property of surface area on unit spheres is covered.

Chapter 2 discusses current tensor voting methods in the literature with several examples and

results cited. The tensor voting framework as it is used in the literature is described and defined.

The generalised tensor voting framework as applied to motion segmentation as used by Nicolescu

[49] is presented and commented on.

Chapter 3 looks at motion traces in a spatio-temporal volume. This leads to an analysis of where

the information to do with motion segmentation lies in the spatio-temporal volume including both

pixel information and pixel inter-relation. In the 3D case, a solution to tangential voting is looked

at, but due to the dimensional limitations a more generalised solution is developed. The concept of a

skew kernel and a skewness measure is introduced to allow third order tensor features to emerge. The

data encoding into the tensors is formulated and explained. To easily evaluate the performance, a

single dimensional example is presented with simulation results. The concept of skewness is expanded

to the two-dimensional image plane in a spatio-temporal volume, and Tensor Skewness maps (TS

maps) are explored.

Chapter 4 looks into the implementation of the algorithms on a GPU. All the architectural issues

are discussed, and an implementation framework given. The algorithms are presented as they are

implemented, including implementation specific methodologies to allow higher order dimensions to

be accommodated. The GPU is also benchmarked against the Personal Computer (PC) Central

Processor Unit (CPU) to determine its performance enhancement.

Chapter 5 looks at some real-world examples. Motion estimation and motion segmentation prob-

lems using standardised sequences are investigated and discussed. Ground truth is also presented

and the results compared and discussed.

Finally, Chapter 6 concludes the thesis giving a summary of contributions, and reflects on results

and potential future work in the algorithms developed.
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1.5 Mathematical notations

1.5.1 Defining the dimensionality

In the following work a lot of traversing between the scalar representations and multi-dimensional

representations is made. It is fitting to clarify mathematical notations here as it will ease the

readability of the manuscript.

We define scalars as non-bold italic letters such as a, b, . . .. This denotes a scalar a that is a real

number, a ∈ R.

We define vectors as bold letters such as a,b, . . .. The dimensionality or length of the vectors is

defined by p where p ∈ N
+ where N

+ denotes positive natural numbers. A vector a is related to real

number space of dimension n by a ∈ R
n. A vector a where p = 1 is a scalar a. For p = 2, we have a

2D vector defined as a = (a1, a2). Higher values of p result in higher dimensional vectors following

the same pattern.

We define multi-valued vectors and matrices as upper case bold letters such as A,B, . . .. Each

element of the vector or matrix has a dimensionality n where n ∈ N
+. If n = 1, then the multi-

valued vector reduces to a normal vector. A multi-valued vector or matrix A is related to real

number space of dimension n × p by A ∈ R
n×p.

1.5.2 Symbols

Scalars, vectors, matrices and high-order tensors

a , b , . . . Representation of scalars or random variables of dimension p = 0.

a , b , . . . Representation of vectors or random variable vectors of dimension p = 1.

unitary (unit length) vectors are represented as â , b̂ , . . ..

A , B , . . . Representation of matrices of dimension p = 2.

A , B , . . . Representation of tensors of dimension p ≥ 3.

Region of support

A Region R is defined as a space in the metric chosen that is used to support or nullify an hypothesis

about a point. This is normally done in Euclidean space around a particular point.

Metrics and spaces
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Ω Generic name of the definition domain of images, curves, surfaces, lines etc.

N
+ Dimension of the underlying space. Generally p ∈ N

+ (natural positive integers).

R
p Closed spatial domain of dimension p. In our case Ω ⊂ R

p.

Inner and outer products

A dot product of two vectors u and v is given as u •v and results in a scalar. The outer product or

tensor product of two vectors u ∈ R
m and v ∈ R

n is given as u ⊗ v and results in a matrix of size

m × n. An inner product is also expressed as 〈u,v〉.

Normalising

The Euclidean distance between two vector points a and b is defined as |a − b|. The length of a

vector a is similarly defined as |a|. To indicate that a vector a has unit length, the unit vector is

defined as â = a

|a| . In the text, the unit vector may be used without indicating the normalisation

process — in this case it must be assumed that the vector has been normalised. The use of the norm

of a may also be used as an extension to the Euclidean distance and is denoted as ‖a‖.

Dropping of subscripts and arguments

In order to make the formulations more readable and compact, subscripts and arguments may

be dropped as formulations are developed. An example of this would be Nij becoming N and

v(s, κ) becoming v. This is only done in cases where no confusion may exist on the formulation

interpretation.
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(a) Stacked images. (b) Spatio-temporal volume.

Figure 1.1: A Spatio-temporal volume represented of part of the Mobile Calender sequence.

1.5.3 Defining image and video representations

The thesis deals with images and spatio-temporal volumes. Spatio-temporal volumes are representa-

tions of images that include the temporal (time aspect) by stacking the images of a video sequence

along the time axis as shown in Figure 1.1.

We define Ω as the domain for all the images, volumes and structures that we work with based on

Tschumperle [68]. We let Ω ⊂ R
p be a closed spatial domain of dimension p. It is important to note

that we define it as a spatial domain which would be characteristically defined as the row (y) and

column (x) position in an image as well as the z or time (t) dimension of a spatio-temporal volume.

The dimensionality p is defined as a positive natural number, p ∈ N
+, and in the case of x, y, z, p

has a value of 3.

For a scalar image or spatio-temporal volume, we define the intensity image/volume I as:

I :

∣

∣

∣

∣

∣

Ω ∈ R
p → R

x → I(x)

where the domain of I is R
p and the co-domain (what I maps into) is into the real number R domain.

Furthermore, each point in Ω has an assigned intensity I based on its location x. Several cases for

different p emerge:

x = x where p = 1 (one-dimensional image)

x = (x, y) where p = 2 (normal two-dimensional image or slice of spatio-temporal volume)

x = (x, y, z) where p = 3. (spatio-temporal volume or set of video frames)

x = (x, y, z, . . .) where p > 3. (multi-dimensional spatial vector or tensor).
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This is a continuous representation. In tensor analysis that follows, this is relevant due to estimation

of points that may not be discrete. This representation has spatial dimensionality, and as such only

represents grey scale images and spatio-temporal volumes. The last case where p > 3 may be used

where further dimensions are added as tensor representations.

For a vector-valued image or spatio-temporal volume, we define the intensity image/volume I as:

I :

∣

∣

∣

∣

∣

Ω ∈ R
p → R

n

x → I(x).

Two common cases for different n emerge. When n = 1, the representation becomes a scalar

representation. For colour images and volumes n = 3 which represents the (R,G,B) of a colour

image. Other colour spaces can also be used and will be described in the text.

In many cases, colour images may be channelised with each colour is represented separately. In this

case Ii : Ω → R which is the ith component of the vector image where 1 ≤ i ≤ n. The vector image

I can be represented in terms of Ii as:

∀x ∈ Ω, I(x) = (I1(x), I2(x), . . . In(x)).

For the sake of brevity, the functional parts may be dropped if the equation remains unambiguous,

such as using I instead of I(x). The images used all form part of a regular grid, so individual pixels

for p = 1 are referred to in discrete form using Ii, for p = 2 as Ii,j and for p = 3 as Ii,j,k, where

i refers to the column, j refers to the row, and k refers to the plane. The correspondence to the

continuous form already given would be x,y and z respectively.

When n moving objects Θi, i = (1, 2, 3, . . . , n) are segmented, they form a complete segmentation:

(Θ1 ∪ Θ2 ∪ . . . ∪ Θn) ≡ Ω

Θi ∩ Θj = ∅ ∀ i 6= j

For the data-driven purposes of the thesis, when an object is occluded it is not deemed to be part

of the analysis anymore.
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1.5.4 Defining tensors

Tensors are extensions to scalars, vectors, matrices, and multidimensional matrices. Tensors repre-

sent a linear quantity in the form of a n-dimensional array relative to a basis in which it is defined.

It becomes a tensor when it is able to define itself without having to refer to this basis. This nor-

mally implies that a tensor is a set of vectors of the dimensionality of the basis it occupies, and is

representable as a linear combination of these. Another way of expressing this is that if a transform

is applied to the tensor, the vectors will transform to a different basis without collapsing any of

these vectors. The order of a tensor gives some information of its form. A tensor of order 1 can be

represented as a vector x with p = n representing the length of this vector. Tensors of higher order

can be represented as linear combinations of first-order tensors a,b, c:

Tijk... = aibjck . . . (1.5.1)

First-order tensors

First-order tensors are generally represented as a vector x ∈ R
n where the length of the vector

represents the length of the order 1 tensor with p = n. First-order tensors allow us to infer positional

information by being able to describe a point in a specific metric. The usefulness of this is analogous

in statistics to an averaging operation (first moment) and in this thesis has limited use, other than

to construct higher-order tensors.

Second-order tensors

Second-order tensors have been extensively used in image and video moving object segmentation

[28, 43, 45, 49]. Second-order tensors allow geometric features other than position to be described,

such as curvature and direction. The equivalent operation in statistics is the covariance or second-

order moment. Following Equation 1.5.1, they can be described by matrices with two indices and

are symmetric and positive semidefinite. A two-dimensional matrix is defined as:

T =















t11 t12 . . . t1n

t21 t22 . . . t2n

...
...

. . .
...

tn1 tn2 . . . tnn















.

The tensors that are used in tensor voting are made up by the outer product of a first-order tensor

(vector) a ∈ R
n with itself. This is equivalent to Tij = aibj which is the second-order representation
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of Equation 1.5.1:

T = a ⊗ a = aa> =















a2
1 a1a2 . . . a1an

a2a1 a2
2 . . . a2an

...
...

. . .
...

ana1 ana2 . . . a2
n















.

Considering that the elements of a are real, the tensor T is considered real. The commutative

property holds in that aiaj = ajai and as such the tensor T is symmetric:

T is symmetric ⇐⇒ ∀i, j ∈ [1, n], tij = tji.

A positive semidefinite (or nonnegative semidefinite) matrix has the following characteristic:

T is positive semidefinite ⇐⇒ ∀x ∈ R
n, x>Tx ≥ 0.

One of the only conditions that a symmetric matrix be positive semidefinite is that it is a Gram

matrix. A matrix AA> is a Gram matrix of the rows of A. In our case the matrix A is the vector

a, which is a matrix where one dimension is a singleton. This confirms that the tensor T is indeed

positive semidefinite. Another important factor used in the construction of tensors in this thesis is

that if A and B are positive semidefinite, then A + B is also positive semidefinite.

An important aspect of the positive semidefinite property is held in the spectral decomposition into

eigenvectors êk ∈ R
n and its eigenvalues λk. A set of n eigenvectors êi and right-hand eigenvalues

λi exist that satisfy the equation:

Tv = λv.

The tensor T is positive semidefinite and this implies:

T is positive semidefinite ⇐⇒ ∀k ∈ [1, n], λk ≥ 0.

Due to T being real and symmetric, the eigenvectors form an orthonormal vector basis in R
n:

T is real and symmetric ⇐⇒ ∀k, l ∈ [1, n], êk · êl = δkl =

{

1 (if k = l)

0 (if k 6= l)

The tensor T can now be written as:

T = RΓR>

where Γ is a diagonal matrix with the eigenvalues down the diagonal:

Γ =

















λ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 λn

















.
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(a) Tensor T represented as an ellipsoid. (b) The tensor T represented as several thin ellip-
soids.

Figure 1.2: Tensor T representations. The red line indicates the vector λ1ê1, the green line indicates
the vector λ2ê2 and the blue line represents λ3ê3.

and R is a rotation matrix or reflection matrix which is characterised by det(R) = ±1 and the

preservation of distances (isometry) in the Euclidean space. In this case it consists of column

vectors ũk which are the eigenvectors:

R = (ũ1|ũ2|. . . |ũn) where ∀k = 1 . . . n, ũk = êk.

The rotation or reflection has orientation given by the eigenvectors. If it is a reflection (det(R) = −1)

the directionality of the orientation could be reflected. The fact that the reflection does not have

directionality on the eigenvectors is important to note as further analysis looks at orientation, but

not necessarily direction. For this reason we refer to R as the orientation, while the diagonal

of Γ indicates the strength of the orientation. The eigenvalues are also ordered and real in that

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. This ordering ensures that the first eigenvector ê1 has the largest

associated eigenvalue λ1.

As a way of visualising the tensor T, we can use an ellipsoid of the dimensionality of the tensor.

The principal axis will than be defined by the eigenvalues and eigenvectors. The 3D case is shown

in Figure 1.2(a). Due to the orthogonality of the eigenvectors, the tensor T can be represented as

the weighted sum of unit orthogonal tensors êkê
>
k :

T = RΓR> =
n

∑

k=1

λkêkê
>
k

The unit orthogonal tensors êkê
>
k do not have direction, but do have orientation. They can be

visualised as thin ellipsoids of length 1 and all other dimension widths being 0. Multiplying these

with the λk weights and summing them together presents the tensor T as a combination of these

thin ellipsoids as in Figure 1.2(b).



14

In the case where all the eigenvalues are equal, we can see that no direction is preferred. This is

called an isotropic tensor and the weighted sum of unit orthogonal tensors reduces to a weighted

identity matrix:

T = RΓR> =

n
∑

k=1

λêkê
>
k = λRR> = λI.

The representation of this tensor in 3D would be a sphere of radius λ, and in N dimensions a

hypersphere of radius λ. We refer to it as a ball tensor. Expanding on this concept we can represent

the tensor T as a linear combination of ascending tensor dimensionality:

T = (λ1 − λ2)ê1ê
>
1 + (λ2 − λ3)(ê1ê

>
1 + ê2ê

>
2 ) + · · · + (λn−1 − λn)

n−1
∑

i=1

êiê
>
i + λn

n
∑

i=1

êiê
>
i . (1.5.2)

Each of these terms represent geometric features of the tensor. The strength or saliency of each

feature is given by the values λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, λn.

We can represent this decomposition graphically for the 3D case in Figure 1.3 as the combination

of 3 geometric features of a stick (thin ellipsoid), a plate and a ball, where the stick tensor is given

as (λ1 − λ2)ê1ê
>
1 , the plate tensor is given as (λ2 − λ3)(ê1ê

>
1 + ê2ê

>
2 ), and the ball tensor is given

as λ3(ê1ê
>
1 + ê2ê

>
2 + ê3ê

>
3 ).

Further significance of Equation (1.5.2) is that the linear combinations of eigenvectors give an in-

dication of normal and tangent vectors associated with the term. For example, the first term

(λ1 − λ2)ê1ê
>
1 is represented as a stick or thin ellipsoid and can be visualised for the 3D case in

Figure 1.3(a). The ellipsoid has a single tangential vector which can lie up or down the length of

the ellipsoid, and several normal vectors. If we constrain the normal and tangent vectors to be

orthonormal, the number of normal vectors will be limited to n − 1.

The number of normal and tangential vectors can be extended to the remaining terms where the

number of tangential vectors increases and the number of normal vectors decreases to the last term

λn

∑n
i=1 êiê

>
i which is representative of a ball tensor. In this case it is not really possible to infer

tangent and normal vectors as there is no actual orientation. The meanings of the saliencies and

vectors is given in Table 1.1. The geometric features and tensor names are as described by Nicolescu

and Medioni [49], and generally refer to a 3D or 4D case. The geometric features are extensible to

N dimensions by focusing on the normal and tangential properties of the structure.

Third-order tensors

Third-order tensors are introduced as a means of extracting further geometric information from

the tokens. The reason for introducing the third order tensor is to be able to look for a geometric

equivalent to skewness in statistics.
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(a) Stick component. (b) Plate component.

(c) Ball component. (d) Combination of stick, plate and ball components.

Figure 1.3: A linear representation of tensor T.

Table 1.1: General second-order tensor relationships.

Tensor Saliency Normals Tangents Feature

Ball λn none none Point
C-plate λn−1 − λn ê1 . . . ên−1 ên Curve
S-plate λn−2 − λn−1 ê1 . . . ên−2 ên−1, ên Surface

...
...

...
...

...
Stick λ1 − λ2 ê1 ê2 . . . ên Volume
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Third-order tensors have the form Tijk = aibjck where the first order tensors a,b,c have a length n.

In tensor voting we construct the tensors from a single first-order tensor a = (a1, a2, a3, . . . , an) and

obtain the third-order tensor:

Tijk = aiajak. (1.5.3)

The form of the third-order tensor T is a three-dimensional matrix. The equivalent in statistics is

skewness or the third-order moment. The three-dimensional form is not suitable for eigen analysis

in the normal sense, but work in the Magnetic Resonance Imaging (MRI) field by Zhang [71] has

identified Z-eigenvalues that perform a similar function. It is also difficult to visualize as the concept

of the ellipsoid is not valid anymore.

Zhang identified an important property of the third-order tensor, and that is the rotational invariance

of the largest and smallest z-eigenvalues, which is similar to the second-order case. An important

aspect of this is the definition of apparent skewness in a projected direction, defined as

Sapp =
T x3

‖x‖3 (1.5.4)

where

T x3 ≡
3

∑

i,j,k=1

Tijkxixjxk.

The apparent skewness is a scalar and can be equated to the eigenvalue in the second-order case.

In the tensor voting framework, the concept of skewness needs to be looked at in terms of a direction

given by one of the eigenvectors of the second-order tensor. Using one of the the unitary eigenvectors

êi that is aligned to the geometric feature in which we are interested, Equation 1.5.4 reduces to

Sei
=

3
∑

j,k,l=1

Tjkleij
eik

eil
. (1.5.5)

The sign of the skewness measure usually indicates whether the first-order tensors are clustered on

either the one or the other side of the projection onto the eigenvector. The magnitude ‖Sei
‖ is used

as a measure of skewness in the orientation of êi.
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1.5.5 The problem with random numbers on n-spheres

In the cases where the orientation of a tensor is fully or partially unknown, it becomes necessary

to generate a set of random tensor orientations in order to numerically determine its effect over a

voting field (introduced later). The intuitive way of doing this in N dimensions is to use a random

vector x ∈ R
n+1, ‖x‖ = 1, where the elements of x belong to the uniform distribution U [−0.5, 0.5].

This vector is normalised using u = x

‖x‖ to the unit n-sphere or hypersphere represented as Sn. This

approach has a problem in that the random variable u is not uniformly distributed over the n-sphere

Sn [53].

A trivial solution to this problem is the intuitive solution to the S1 sphere in R
2 where a uniform

random variable θ of dimension 1 and distribution U [0, 2π] is transformed using the rotation matrix

[cos(θ) sin(θ)]> to produce a random variable x = [cos(θ) sin(θ)]>. This random variable can

be seen to be uniform on the perimeter of the S1 sphere (circle). Extending this to the 3D unit

sphere, through the use of rotational matrices in 3 dimensions needs two random variables φ and θ

as a polar representation of the unit S2 sphere. The distribution of θ is U [0, 2π] as in the case of the

1-sphere, and the distribution of φ is U [0, π]. This will result in a non-uniform distribution on the

S2 sphere as the points will cluster at the pole and be more sparse on the equator of the S2 sphere.

By weighting the distribution of φ with a cos weight, this can be rectified but the process becomes

involved at higher dimensional Sn spheres.

There are several solutions for higher dimensions given in the literature such as the subgroup algo-

rithm of Diaconnis and Shashahani [8]. This solution needs QR factorisations in order to transform

a uniform random variable onto the n-sphere and would not be appropriate in numerical Monte

Carlo studies. For numerical methods, there are three solutions.

Monte Carlo rejection method

The rejection method uses uniform random variables x ∈ R
n+1 with individual distributions U [−1, 1].

The random points are evaluated to see if they fall inside the n-sphere by evaluating ‖x‖ ≤ 1.

If this inequality does not hold, then the point is rejected. If the inequality holds, the point is

retained and the random variable u = x

‖x‖ lies on the unit n-sphere and is uniformly distributed

over Sn. This method is easy to implement, but the number of points within the unit n-sphere

drops exponentially as the dimensionality increases which makes this hit-and-miss technique badly

suited for dimensionalities over 10. In tensor analysis, the dimensionality can reach this level fairly

quickly.

Coordinate method

The coordinate method looks to determine the distribution of each coordinate of the n-sphere uni-

formly distributed variables. This is a complex undertaking in N dimensions [53] that involves an
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iterative approach as each dimension is transformed. In the algorithm, the inverse of a cumulative

distribution function needs to be solved numerically as no closed-form solution exists. The solu-

tion to the inverse of the cumulative distribution function is done using an approximation method

such as Newton’s method. The method is fairly complex but scales approximately linearly as the

dimensionality of the n-sphere increases.

Gaussian method

The Gaussian method was proposed by Knuth [32] and relies on the characteristics of a multi-variate

independent Gaussian distribution:

f(x) =
1√
2π

n e−
1
2 〈x,x〉 (1.5.6)

which has a density of N(0, 1). What is of interest is that if we transform the random variable x

using a rotation matrix R such that y = Rx, then we find that the distribution of y is N(0, 1) as

well. This is due to the 〈x,x〉 inner product in Equation 1.5.6 being transformed to 〈Rx,Rx〉 and

knowing that R>R = I. This invariance to rotation leads to a Monte Carlo method where we choose

a random vector x ∈ R
n+1 with distribution N(0, 1) and project it onto the unit n-sphere Sn by

u = x

‖x‖ which are uniformly distributed on the n-sphere. Numerically, the Box-Muller method [3]

can be used and the computational complexity is linear. This method scales well for high dimension

n-spheres and can be appropriate for this thesis.

Another candidate as a normal random number generator is the one that MATLAB uses. MATLAB

uses a method based on the Ziggurat [41] algorithm. This algorithm makes use of preset lookup

tables and layered equal area rectangles covering the target Gaussian density. Several variants of

this algorithm exist, but the one described by Marsaglia [41] provides an efficient method running

99% of the time from look-up tables.

When working with higher-order tensors, the results are sensitive to non-ideal random number

generators. Care needs to be taken in choosing a pseudo-random number generator such that the

results in the Monte Carlo analysis are well behaved. For the purposes of this thesis, the Ziggurat

method as described by Marsaglia [41] is adopted. This was validated during the course of the thesis

by simulation.
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Figure 1.4: surface volume Sn−1 as a function of dimensionality.

1.5.6 The shrinking n-sphere

In the tensor analysis to follow, the dimensionality of the problem is often high. In order to generate

sufficient random numbers on the unit n-sphere, the concept of n-sphere surface area need to be

introduced as this is the value that represents the number of random numbers to be generated for

stable results, as well as the relationship between several dimensions where the cummulative effect

of the random points must be balanced.

In Monte Carlo analysis, it is necessary to balance the number of random points for a specific unit

sphere Sn of dimensionality n. This is done by weighting the number of iterations used in the

Monte Carlo analysis by the unit n-sphere surface area, or more correctly the surface volume of

dimensionality n − 1.

The surface volume can be denoted as:

Sn−1 =
2πn/2

Γ(n/2)
(1.5.7)

where Γ(·) is the gamma function. When this surface volume is determined for varying n as in

Figure 1.4, we observe an inflection showing that the surface area diminishes as n > 7. This is

counter-intuitive, and must be borne in mind in higher-dimensional problems that can and do occur

in tensor voting. The solution to this problem is to increase the number of Monte Carlo iterations

accordingly to obtain sufficiently good voting results, or to fix the iterations if it is only a ball vote.



Chapter 2

Discussion of current methods

We look specifically at tensor voting and allied methods that have been developed in the literature.

We reproduce the main line of algorithm development and look briefly at the various successes in

the line of video segmentation that have been obtained using tensor voting. After surveying the

methods, we return to the particular problem of moving-object segmentation in video sequences and

discuss these techniques applied to this problem, focusing on whether there is room for improvement.

20
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2.1 Introduction

In the previous chapter the mathematical background necessary for tensor voting was discussed. In

this chapter we look at relevant literature limited to the field of tensors applied in the image and

video field. Literature on generalised motion segmentation is not covered as the area is not within

the confines of the thesis and would not be entirely relevant.

The work is referenced in chronological order to preserve the evolution of tensor techniques.

The generalised tensor voting framework is introduced in this section as it appears in numerous

references cited. The tensor voting framework is expanded on in subsequent chapters to include

tangential voting, direct data encoding and skewness measures.

2.2 Previous work on tensors in the video segmentation field

The motion estimation problem approached by using orientation tensors has been done by Farnebäck

[13, 12] in 2001 in his thesis [14] and previous formulations [11, 9, 10]. He makes use of the pop-

ular Yosemite series (without the clouds) with a technique that uses an affine motion model with

simultaneous motion estimation and segmentation. In this paper he attains average error of 1.14o

for 100% density of pixels, which was better than several existing methods of the time.

Han together with Medioni [22] put an initial foundation down in tensor voting by using the precur-

sors to the tensor voting kernel on document line deskewing, where the orientation of the text lines

are estimated.

Lee uses Tensor Voting in her PhD thesis [35] in 1998. The thesis defines the tensor voting framework

and inference of geometric features from the saliences of the tensors. The thesis also introduces the

sparse to dense method of densification that most further work in tensor voting in the field of image

and video processing use.

In 1999, Gaucher together with Medioni [16] look into using Tensor Voting as extended in this thesis

to do motion segmentation over 3 frames. Effort is spent on separation of the motion layers and

occlusion. This technique is applied to the Yosemite sequence (where no occlusion exists) with an

average error of 8.83o for 100% usage of pixels.

In a work using the z component further than the 2 or 3 frame problem, Haussecker [24] makes use

of the 3D volume made up of an intensity image. He imposes the brightness change constraint on

the volume to define a structure tensor. This tensor makes use of local gradients and local binomial
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Figure 2.1: Use of structure tensor from Haussecker taken from [24].

smoothing. The formulation looks at coherency to define motions grouped together and an edge

measure to detect the aperture problem. The resulting motion fields are shown in Figure 2.1.

Kang, Cohen and Medioni [30] use the tensor framework in joint image space to estimate several

affine motions. This is compared to RANSAC and favorable results are shown by looking at image

differences after motion compensation. A further paper [31] uses tensor voting over a video scene

to track persons and vehicles. The tensor approach is used to filter and connect track trajectories

in a multi-object, multi camera system. Kornprobst and Medioni [33] also look at the problem of

tracking objects and the improvements that can be gained using tensor based voting to determine

singular trajectories.

Tang and Medioni [58] use tensor voting to get saliency maps of surfaces and curves in 3D. After

a densification step, their method of using extremals to delineate geometric features in 3D space is

applied. This is effective in delineating surfaces and curves in noisy 3D data. In further work [60]

they refine the algorithm by using tensor voting that takes curvature into account. This is built into

three different kernels and is applied on the data separately to determine the saliency with which

the data complies with the kernel. Tang, Medioni and Lee [63] use tensor voting in an 8D space to

do epipolar geometry estimation from stereo images. This problem is effectively addressed using the

concept of extremals and several passes through the tensor voting framework to refine the answers.

Mordohai and Medioni [46] use the tensor voting framework on stereo imaging to improve the

disparity maps. This is further extended by Lee, Medioni and Mordohai [36], who use tensor voting

on stereo image disparity maps to improve surface estimation of 3D objects. The tensor voting
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deviates from other stereoscopic techniques in that it presents a unified approach in dealing with

communication and interpretation of the disparity map. Figure 2.5 shows the results obtained on

the disparity map by Lee et al.

Lui, Chellappa and Rosenfeld [38] use an adaptive structure tensor based on a parametric model to

do dense motion estimation. The approach yields comparable results to other leading edge methods

on numerous test examples. The results are reproduced on the Yosemite scene that Farnebäck also

uses. The adaptive affine method proposed manages to produce a mean error of 1.39o for 100% pixel

density. The result is shown in Figure 2.6.

Massad, Balbos and Mertsching [42] apply tensor voting together with Gabor filtering on grey

scale images to infer better contours and junctions. The saliency maps are used to extract edge

information.

Medioni, Tang and Lee [43] present a consolidated paper of the theory and applications of tensor

voting. This paper is a synopsis of the work done at University of Southern California over a period

of several years. The range of applications includes motion flow estimation in video sequences, 3D

shape from stereo imaging and 3D smooth shape restoration.

Tong, Tang, Mordohai and Medioni [67] introduce the concept of augmenting the second order

tensor voting with first order tensor voting to get polarity from the regions edges. The first order

voting consists of the addition of vectors at the votee site giving the direction of the majority of the

voters weighted by distance and curvature. The method is very similar to the skew tangential voting

introduced later except that the augmentation method uses two steps (outlier rejection followed

by densification) to get the polarity, while the method to be proposed extracts edge characteristics

in the second order voting process without densification. The augmentation method produces two

results in the voting process which is the first and second order tensors. The skew tangential voting

gives orientation from the second order voting process and then augments it with a more complex

third order voting process to determine boundary points.

Nicolescu and Medioni [49] use tensor voting to do video motion segmentation on two frames. The

resulting segmentation is good in selecting regions of similar motion, but led to a further paper [50]

that includes a refinement of the boundaries using the image gradient and orientation in a 2D voting

process. The results on a fish sequence are shown in Figure 2.3. These results are pertinent to this

thesis, and do form part of the methodology.

Jia together with Tang [28] use the tensor voting approach and extend it into the N dimension

space. This was primarily to infer missing data in images and 3D objects. The inference of missing

data makes use of iterative stick voting. This gradually erodes the missing data with inferred data.

Good results are obtained, as seen in Figure 2.7. Jia and Tang [29] also look at using tensor voting
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Figure 2.2: Correction of local intensities in mosaic image reconstruction taken from [29].

for local and global intensity alignment in multiple images. The technique is used to do mosaicing

and image enhancement in a fashion that surpasses histogram correction techniques. The results are

shown in Figure 2.2. Jia et al. [26] extend the tensor voting solution to inference of missing data to

allow estimation of missing cyclic movement in video sequences, as shown in Figure 2.4.
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Figure 2.3: Results taken from [50] showing the tensor voting approach used in segmenting a fish
from 2 frames of a video sequence and the subsequent boundary refinement.

Figure 2.4: Estimation of cyclic motion in a video sequence taken from [26].
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Figure 2.5: Results taken from [36] showing (a) the original images, (b) the initial correspondences,
(c) the unique disparity assignments, (d) the inferred surface in disparity space and (e) the texture
mapped views.
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Figure 2.6: Algorithm reproduced from [38] showing the motion field estimation of the Yosemite
sequence.

Figure 2.7: Inference of missing data taken from [28].
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2.3 Tensor voting framework

The tensor voting framework is compiled from several sources, the most important being Medioni

[43] and Nicolescu [49, 50].

A video or image sequence is made up of pixels defined in a specific basis frame (usually (x, y, t)) and

for attributes of each pixel that may or may not be related to the positions (x, y, t), such as vx, vy,

and colour or greyscale information. This information is partially or completely used in making

up tokens. In the cases that follow, the components (x, y, vx, vy) are used and are basic geometric

(positional) quantities.

The basis of tensor voting is to use a region of support R around a token to determine whether the

token forms part of a geometric structure such as a curve, volume or junction while simultaneously

allowing a measure of noise rejection. By using second-order tensor representations, the second mo-

ment allows curvature and tangents on curves and surfaces to be described. Tokens are represented

in a tensorial way for first-order tensors:

ti = (x1i
, x2i

, ..., xni
). (2.3.1)

Extending this to the second-order tensor, we get

Ti = tit
>
i . (2.3.2)

The second-order tensor is positive semidefinite and this characteristic is retained when the second-

order tensors are accumulated:

A =
∑

i

Ti. (2.3.3)

The accumulation allows meaningful Monte Carlo analysis to be done and allows eigenanalysis to

yield good approximations of the geometric features much in the same way as a covariance matrix.

2.3.1 Second-order tensor data representation

The second-order tensor data representation has been described in 1.5.4. The generalised equation

1.5.4 can be interpreted in the 3D (n = 3) sense as:

T = (λ1 − λ2)S + (λ2 − λ3)P + λ3B, (2.3.4)

where B is the ball component having no particular orientation. This can be visualised as a sphere

and is defined by ê1ê
>
1 + ê2ê

>
2 + ê3ê

>
3 . The plate component is given by P and has no orientation

around two of the three axes. This assesment can be visualised as a disk/plate and is defined by

ê1ê
>
1 + ê2ê

>
2 . The last component is the stick component given by S, which is aligned to the ê1 axis.
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Figure 2.8: 3D ellipsoid tensor representation.

This can be visualised as a stick/line and is defined by ê1ê
>
1 . In Equation 2.3.4 the eigenvectors and

eigenvalues describe an ellipsoid as shown in Figure 2.8.

For the 3D case the different components allow us to differentiate geometric features. These consist

of points that have no firm direction (B), points on surfaces or plates (P) and points that are on

lines and curves (S). The coefficients of these terms are the saliency measures and have the following

characteristics:

1. Point saliency. This is characterized by very similar eigenvalues (λ1 ≈ λ2 ≈ λ3) and has no

preferred direction. The saliency value is given by λ3.

2. Curve saliency. This is characterized by two similar eigenvalues larger than the third (λ1 ≈
λ2 > λ3). The measure is λ2 − λ3 being large in value indicating a strong curve directionality

(belonging to a line) with a tangent unit vector ê1, and the normal unit vectors are given by

ê2 and ê3. The saliency value is defined as λ2 − λ3.

3. Surface saliency. This is characterized by one eigenvalue larger than the second and third

(λ1 > λ2 ≈ λ3). The measure is λ1−λ2 being large in value indicating a strong surface affinity

(belonging to a surface), and the normal unit vector is given by ê3. The tangent unit vector is

given by ê1 and ê2 The saliency value is defined as λ1 − λ2.
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The 2D case, which has the smallest dimensionality, is defined as:

T = (λ1 − λ2)S + λ2B (2.3.5)

where only points and curves are present, not surfaces as there are no plate tensors.

In the tensorial representation, the formulation of Equation 2.3.4 is extensible to N dimensions:

T = (λ1 − λ2)S +
n−1
∑

i=2

(λi − λi−1)Pi + λnB (2.3.6)

where Pi are n − 2 plates and Pi =
∑i

j=1 êj ê
>
j . These have been given names such as C-plate

(Curve plate) and S plate (Surface plate) [49] in the 4D case, but these names are fairly arbitrary

in the N dimensional case.

The various saliencies get modified to adapt to the N dimensional meaning:

• (λ1 −λ2) gives the hyper-surface saliency with a single normal direction given by ê1 and n− 1

tangential directions given as êi with 2 ≤ i < n .

• The n − 2 plate tensors whose saliency is described as (λi − λi+1) where 2 ≤ i < n. The

orientation uncertainty is described by
∑i

j=1 êj ê
>
j . The tangent(s) are described by êt where

i < t ≤ N , and the normal(s) by ên where 0 < n ≤ i. This results in a (n − i) dimensional

feature in N dimensional space. In the case of 3D (n = 3 and i = 2), this would represent a 1D

feature, which is a curved line with two normals ê1 and ê2 and one tangent ê3. In 4D (n = 4

and i = 2), this would represent a 2D feature which is a surface, with two normal directions,

ê1 and ê2, and two tangential directions, ê3 and ê4.

• λn refers to the hyper-junction saliency. In this case there is total uncertainty of orientation.

2.3.2 Second-order tensor data communication

In order to construct the second-order tensors and make use of their properties, it is necessary to

allow communication between the tokens from the surrounding region of support R.

Tensor voting makes use of tensor communication in order that tokens at various points can vote

at other token points. This is described by a kernel. A typical case, and the one used most in

the literature, has the vote decay with distance and with curvature according to a Gaussian (e−x2

)

function. A kernel that can describe this decay allows the scalar vote strength to be described as

VSstick(s, κ) = exp−
(s2+ακ2)

σ2 , (2.3.7)
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Figure 2.9: 2D vote strength if directional information is known.

where s is the arc length joining the tokens as shown in Figure 2.11, κ is the curvature, α is a

curvature scaling factor and σ is the radial distance scaling factor. This form of vote strength is

applicable if the orientation and position of the voter is known explicitly, as is the case of the stick

data representation S.

If we look at the 2D case, the vote strength in Figure 2.9 of voter P on votee Q is seen to get less for

increased radial distance (Q1) and increased curvature (Q2). If the effect over the xy plane in 2D is

mapped, then Figure 2.10 indicates very little strength broad-side to the voter (high curvature) and

a general radial decay (greater distance). The arc length and curvature can be derived geometrically

from Figure 2.11 and are given by:

r =
l

2 sin(θ)
; κ =

1

r
; s = 2rθ. (2.3.8)

It is better to use equations containing cos(α) as this parameter is easily calculate using dot products

between unit vectors. The set of equations can be written as:

r =
l

2 cos(α)
; κ =

1

r
; 2θ = π − 2 arccos(| cos(α)|); s = 2rθ. (2.3.9)

Furthermore, the scale is denoted by σ. This determines the decay of the vote strength with distance

and curvature. An additional constant α scales the radial decay and curvature decay in relation to

each other.

Up until now, we have been dealing with the vote strength which is a scalar. In order to determine

direction, the normal unit vector at point P must be known. This is denoted as N̂P . In the voting
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Figure 2.10: 2D V Sstick(x, y) showing both the strength and the vector field. Blue indicates low
strength and red indicates high strength.

process, N̂P is known, but N̂Q must be found. In order to do this, we extend the unit vector N̂P

to the center point C and then align it back to point Q:

C = rN̂P + P; NQ = C − Q. (2.3.10)

The first-order tensor (unit vector) at point Q is denoted by N̂Q. Including the vote strength we

get:

vstick(s, κ) = VSstickN̂Q, (2.3.11)

and extending to the second-order tensor:

Vstick(s, κ) = vstickv
>
stick. (2.3.12)

The above equations are in terms of (s, κ). Using Equation 2.3.8 and the relationships:

l =
√

xQ
2 + yQ

2; θ = arcsin(
yQ

xQ
)

we can determine VSstick at point Q in terms of (xQ, yQ) and we can denote this as vector q. We

can plot the kernel vote strength as a function of (xQ, yQ) as in Figure 2.10.
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Figure 2.11: Geometry of 2D stick vote.

We can extend Equation 2.3.12 to 3D by noting that the stick vote strength VSstick is radially

symmetric around the x axis. This is indicated in Figure 2.12(a). Essentially, all dimensions higher

than 2D can be reduced to a 2D problem by rotating the plane defined by the vector N̂Q and the

receiver point Q such that it is the 2D plane defined by xy in Figure 2.11.

The stick vote is applicable when the normal vector N̂P is known. There are many instances where

it is completely unknown, or is only known in some of the dimensions. In these cases, all possible

unknown orientations are integrated. In the 3D case, the plate vote Vplate(q) can be found by

integrating the stick vote around the z-axis to produce

Vplate(q) =

∫ 2π

0

R−1
θφγ(Vstick(qRθφγ))R−T

θφγdγ|θ=0;φ=0, (2.3.13)

where the stick vote is first rotated with the rotation matrix Rθφγ such that it is aligned with the ê1

vector of the stick vote at point P. The rotations θ, φ and γ are around the x, y, z axis respectively.

The rotation corresponds to the situation where there is certainty in one axis and not the other two.

The integration takes the form of a circle in the xy plane. We can visualize the rotation as shown
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in Figure 2.12(b).

If there is no certainty in direction, a ball vote Vball(q) can be found by integrating over the whole

sphere:

Vball(q) =

∫ 2π

0

∫ 2π

0

R−1
θφγ(Vstick(qRθφγ))R−T

θφγdγdφ|θ=0. (2.3.14)

The result of the ball vote in 3D is shown in Figure 2.12(c). The integrations can be substituted

with summations in the discrete case.

The votes are iteratively done on the votees, where the votee set comprises of all the elements Ti.

The voters are drawn from the same set within a radius (defines the region of support R) such

that contributions beyond this radius are negligible. The contributions become negligible due to the

radial exponential decay defined by σ. Any points further than 3σ are deemed negligible. All the

voter’s second-order tensor votes are tensorially added and then the eigenvalues and eigenvectors

are determined, allowing the mentioned saliencies to be computed. The saliencies determine the

characteristics of the votee point in relation to its surrounding elements. In the 3D case, a votee

may be characterised as being an independent point, as a point within a volume with its point

saliency, as a point on a 3D surface by its surface saliency, or as a point on a curve or line with its

curve saliency.
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(a) Stick vote VSstick(x, y, z). (b) Plate vote VSplate(x, y, z).

(c) Ball vote VSball(x, y, z).

Figure 2.12: 3D representations of stick, plate and ball votes.
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2.4 Tensor voting framework applied to motion segmentation

Tensor voting in moving object segmentation as it has been defined in the literature [35, 43, 45, 49]

provides a good measure of finding geometric features. The tensor voting method almost always

follows the flow indicated in Figure 2.13.

• Selection of input tokens. The selection of input tokens is sparse and is usually based on a

feature detector such as a corner detector for 2D image position, and on correlation matching

(using a region R) to obtain subsequent frame displacement velocities (vx, vy). Normally [49],

several match candidates using different block matching sizes are placed in this set.

• Ball tensor voting. An unaligned tensor vote is carried out, and the surface saliency is extracted

for all the sparse points. Points that are below 10% of the maximum surface saliency are

censored from the token set.

• Refined tokens. The refined tokens are a subset of the sparse input tokens containing only

tokens that have a good surface saliency. Tensor voting can be applied again to further refine

this subset, and to get better surface estimates by excluding outliers.

• Densification. In order to assign a velocity to every (x, y) point in the image, a set of candidates

based on the minimum and maximum velocities are assigned to each open (x, y) location, and

voting with censorship is applied repeatedly. This erodes the open (x, y) locations until the

token map is complete in (x, y). Usually some apriori information is applied [49] to prevent

impossible selections or uncontrolled growth of surfaces.

• Dense saliency map. After densification each (x, y) point in the 2D image has an assigned

surface saliency.

• Feature extraction. Feature extraction is a heuristic process where surfaces are separated from

each other using some dissimilarity algorithm, so that the surfaces can be individually labeled.

• Features. Each (x, y) point in the image is now labeled according to motion.

The work done by Nicolescu [49] succeeds in finding moving regions in a data set corrupted with

many outliers. Using simple synthetic shapes such as disks, the segmentation is good, but when

natural images are used the edges are indistinct as shown in Figure 2.14. This is to be expected

due to the densification stage using no image data to make the decision as to where the edges of

the object are, and the method is similar to a watershed system where two opposing seed areas

approach each other. The densification populates the unassigned spaces equally fast preserving

rounded boundaries well. By using a disk, the densification completes populating the unassigned

spaces more-or-less on the boundary [47].
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Figure 2.13: Generalised tensor voting flow diagram.
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(a) Flower Garden sequence. (b) Segmentation of tree trunk.

Figure 2.14: Indistinct edges found on the Flower Garden sequence taken from [49].

Nicolescu continued and proposes a solution by using tensor voting in the indistinct region between

moving objects [50]. In this approach the described tensor voting approach is followed until the

surfaces have been extracted. Knowing that the boundaries may be inexact, a refinement process

is carried out by defining a horizontal zone of uncertainty centered around the detected boundary

(the vertical uncertainty is dealt with separately) with the width matched to the largest correlation

filter used in obtaining the initial vx estimates. For a specific boundary point (xc, yc) the horizontal

line is opened up, the horizontal image derivative Dx determined over the segment, and a Gaussian

decay weight applied to introduce a bias towards the current estimate of the edge. The following

mapping into the 2D tensor space is used:

e1 = (Gx, Gy) (normal to edge)

e2 = (−Gy, Gx) (tangent to edge)

λ1 = |Gx|
λ2 = 0,

where the gradient in the y direction (Gy) is found by looking at adjacent rows. This represents

a 2D stick voting process, where the desired geometric feature is a curve (λ1 − λ2). This process

is repeated for the vertical zone of uncertainty. The maximum curve salient points are then used

as seed to grow the ridges of a boundary through the uncertainty regions and assign to pixels their

respective surface labels. Further refinement can be done using the surface tensor voting approach,

but this time with apriori knowledge of the regions. This refines the velocity (vx, vy) estimates. The

refinement seems to give good edge estimates, as shown in Figure 2.15.

The image gradient approach makes use of image gradients on the 2D image plane (no motion

information) to refine the edges, which is a valid approach but may have difficulties in indistinct or

aliased image areas.
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(a) Unrefined edges. (b) Refined edges.

Figure 2.15: Refinement of edges on a fish sequence taken from [50].

The methods by Nicolescu use two frames of a video sequence, even when more are available. Min

and Medioni [45] recently propose extending the tensor voting process of Nicolescu [49] to spatio-

temporal volumes, as indicated in Figure 1.1. This adds an extra dimension of time to the tensor

voting problem. Although not central to the proposed formulation, cross-correlation techniques

using local 2D neighborhoods is still used to determine (vx, vy). The matches are also limited to

not have more than a single match between the adjacent frames and the reference frame due to the

potential explosion of tokens resulting in a problem with too many mismatches and no clear solution.

The 5D tokens are allowed to vote in such a way that the feature sought is defined by the 3D

trajectory of a test pixel point through space. Due to the fact that 5D spaces are difficult to visualize,

the parametric equations of the relationship between (x, y, t, vx, vy) are investigated, yielding the

required geometric feature of the 3D traces as a feature with 2 normal vectors (ê1, ê2), tangential

vectors (ê3, ê4, ê5) and saliency measure λ2 − λ3.

The formulation follows the same process given in Figure 2.13 except that the densification process

is guided by an oversegmentation of the 2D reference plane image using an image based algorithm

(such as watershed). Each of the oversegmented regions are checked to see whether they must be

fused by checking whether the following conditions apply:

• The average of the derived velocities (vx, vy) along the adjoining boundaries are similar and

• The normals of (vx, vy) along the adjoining boundaries are similar.

The computation in a 5D space leads Min to use Graphic Processor Units to speed up the com-

putation. The results, which can be seen in Figure 2.16, show good segmentation of the car, but

fairly corrupted segmentation on the Flower Garden sequence. The reason for not finding the small
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(a) Car sequence. (b) Flower Garden sequence.

(c) Car segmentation. (d) Flower Garden segmentation.

Figure 2.16: 5D tensor voting applied on two images taken from [45].

branches and the smearing of the trunk is due to the 2D image segmentation failing in highly complex

and textured regions.

2.5 Summary

In this chapter we have outlined the current work done by other authors in the tensor voting field as

applied to image and video segmentation and presented some of their results. The generalised tensor

voting framework is outlined forming the basis of the continuation of the thesis and the formulation of

new voting strategies. The tensor voting framework as applied to motion segmentation is described

and commented on.



Chapter 3

Formulating a method of
estimating motion traces

This chapter discusses and proposes methods of finding accurate traces of moving pixels in video

scenes using tensor voting. Preliminary work produced rudimentary results, and this was further

developed with a new kernel to extend the work into N -dimensional tokens. Several experiments with

easily visualised sequences allow a foundation to be made that is extended into the N -dimensional

domain. The various problems that require extension of the tensor voting framework are presented.

41
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3.1 Introduction

In the previous chapter current methods in tensor voting as applied to motion segmentation devel-

oped by other authors were presented and commented on. The generalised tensor voting framework

was presented that forms the basis of further work in this thesis.

In this chapter the motivation for using trace-based tensor voting as opposed to the surface-based

tensor voting of the previous chapter is presented. An analysis of which data is important in the

spatio-temporal volume is done and the importance of preserving the information in the data is

discussed.

An initial 3D trace solution is formulated and presented. The results and limitations of the proposed

trace solution are discussed.

A novel method of using a tangential voting kernel is presented and analysed. The kernel is extended

to be a non-symmetrical tangential kernel and the effect of the kernel is presented and analysed.

In order to be able to visualise the effect of tensor voting on motion estimation, a single-dimensional

synthetic tissue earth sequence is generated and analysed under various tensor encodings. The

analysis is done both for an ideal sequence as well as for an interpolated sequence. From the single-

dimensional analysis, the geometric feature of skewness is extracted and analysed.

A discussion of the relevance of the geometric feature of skewness is presented and its relationship

to occlusion and disocclusion is discussed. Matched filtering techniques are proposed to be able to

detect the edges of occlusion and disocclusion.

The analysis is extended into the two dimensional spatial domain, and new tensor encodings are

introduced. The encodings are analysed in terms of sufficiency in representing motion vector orien-

tation, and the occlusion and disocclusion detection capabilities verified on an ideal synthetic tissue

earth sequence.

Lastly, the problem of high dimensionality Monte Carlo analysis is looked into and a simplified stick

vote solution is proposed that can be relevant to high dimensional problems.
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3.2 Motivation for using motion traces

3.2.1 Introduction

In the introduction, numerous results of relevant work have shown a few areas where improvement in

segmentation of video sequences can be effected. All of these works are aligned to the tensor voting

framework and use standard image processing techniques in transforming the image into tokens.

This is a crucial step in trying to preserve information that is later used in the voting process.

Suggestions and formulations are made as how to keep as much data as possible in the preparation

of the tokens.

3.2.2 Where is the information?

In order to maximally utilize the data in a video sequence one needs to look at where the moving

information is held in the sequence.

Fundamentally, if one only has one frame, one would not be able to achieve any moving object

segmentation at all unless one has a clear concept of the objects being looked at. An example is if

there is a car in the sequence and it is on a road, it is probably moving. For an algorithm to know

this it is necessary to classify and assign characteristics to objects, which is not possible with low

level vision algorithms.

Most algorithms use two or three frames to determine moving objects. This provides a degree of

information, but if there is aliasing or if there are boundaries of homogeneous colour, the algorithms

will either need to guess the boundaries in these regions or fail.

If one is able to look at a full video clip then much more information can be utilised to find moving

objects. There are still problems concerning occlusions and objects entering and leaving the video

scene, and these need to be dealt with using higher level vision algorithms. From this discussion, it

makes sense to use a spatio-temporal volume to represent the video sequence.

One of the fundamental constraints on moving object segmentation is the optical flow constraint,

which is represented as

(∇g)>v = 0 (3.2.1)

where ∇g = ( ∂g
∂x , ∂g

∂y , ∂g
∂t )> is the gradient of the intensity g(x, y, t) at a 3D point (x, y, t), and

v = (vx , vy , vt)
> and represents the 3D flow or velocities. The optical flow constraint is based on

• Constant illumination. In the tensor voting framework, the algorithm looks for a geometric
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feature that is smooth or slowly changing. This relaxes the constant illumination limitation

somewhat and also frees it from the rigid body formulations such as affine rigid body motion

assumptions.

• Lambertian reflectivity. This assumption is generally true for natural video. This thesis will

not cover highly specular objects.

• Brightness variation only due to motion. In a video scene the lighting will rarely change. It

will probably change from one scene to the next. If this was the case, the video clip would be

highly disturbing to view.

The optical flow constraint is used in most low-level vision algorithms used in estimating motion

in image sequences. Correlation techniques using block matching make direct use of optical flow

from one frame to the next. Most techniques use a region of support R consisting typically of pixels

in the vicinity of the reference pixel or group of pixels. The region of support has the following

characteristics:

• Large region of support R. If the motion estimation of a reference pixel is determined by the

surrounding data, the measurement is integrating the surrounding data in an effort to robustify

the estimate. If the region of support is within the moving object, the estimate of motion is

good. If the region of support straddles a boundary, the estimate is corrupted due to several

different motion behaviors within the region.

• Small region of support R. When using a small region of support, the robustness of the motion

estimate is compromised. Areas with aliasing and featureless areas can result in erroneous

estimates. Due to the low level of integration, the intrinsic errors are not well suppressed.

With a small region of support, the erroneous estimates on boundaries become fewer.

• Directional region of support R. In order to change the region of support as a potential motion

boundary is included, various methods of distorting the region of support to try and stay within

a moving object can be used [17, 15]. This potentially has the problem that knowledge of the

solution is needed prior to the algorithm being applied.

In terms of tensor voting tokens, the approach in the 4D case [49] has been to use several different

sizes of the region of support R. The motion estimates from all of these are encoded as tokens, and

the tensor voting process eliminates the incorrect candidates — but the edges of objects still need

to be handled in a different way [50].
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Spatial data

It is important to note that motion (vxref
, vyref

) of a reference pixel (xref, yref) cannot be inferred by

only looking at the reference frame raw image data. Motion information is contained in differences

between the image frames in a video sequence. There are several ”clues” as to what may be moving,

such as high contrast boundaries, but they themselves do not show that the object is moving. Normal

motion estimation techniques exploit the differences between frames by using techniques to minimise

the difference between two regions where there is a displacement (vx, vy) between these regions of

support. The operation of differentiation or subtraction destroys part of the image data information

by removing the absolute image data and reducing it to only the difference. In most cases, such as

block matching, this reduction in information is acceptable due to the region of support being large

enough for integration to allow good motion estimates.

It would be better to retain the image data, and tensor voting provides an avenue in that the

raw data value may be utilised, and not the difference data that has currently been employed by

[49, 50, 45].

In block matching techniques, a matching search region is also defined within which to look for

correspondences. The size of the region in (x,y) is determined by:

• Frame rate. The frame rate determines the scale of the t axis. For low frame rates, the inter-

frame t increases. This would effectively increase the matching search region in (x,y). Higher

frame rates will decrease it and reduce the scale.

• Expected dynamics. If a highly dynamic video clip, such as motor racing, is being used, the

matching search region will also increase.

For block matching, the matching search region is defined as a square and is defined in [2]. A more

rigorous estimate would be a circle, due to the apriori unknown direction of movement. Extending

this concept into the spatio-temporal volume, the matching search region can be described as a

matching cone volume, which describes an uncertainty region emanating from the reference frame

into the preceding and succeeding frames. The cone diameter increases at the rate of the matching

search region as the frame becomes more distant from the reference frame, as shown in Figure 3.1.

What has been described is a model for the selection of tokens in (x,y,t) for a given (xref, yref, tref).

In terms of tensor voting, this implies that given a votee token, the voter tokens can only be selected

if they comply with the model.
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Figure 3.1: Representation of a matching cone volume.
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Pixel information

Each pixel in an image or image sequence has an intensity which can either be a scalar (gray-valued

image) where n = 1 or a vector where n = 3. The intensity represents an attribute of a specific spatial

position (x, y, t). The characteristics of this attribute are directly used by the optical flow constraint,

in trying to keep the differential of this attribute close to zero. In the current implementations of

tensor voting, correlation techniques (differencing methods) are used to derive (vx, vy). If the colour

attribute is used directly, the data will be used directly. Caution must be exercised as the scale of

the pixel attribute may be different from the scale of the spatial coordinates.

Colour information is normally given as:

• Gray scale. This is a single intensity value. Video sequences are rarely gray-scale, but this

formulation is useful in developing theories.

• RGB Colour. RGB colour has 3 components (R,G,B) and is the usual representation in com-

puting and images. Using RGB values is often the preferred format, as it is the representation

space of colour images.

• YCbCr Colour. YCbCr colour has 3 components (Y,Cb, Cr) and is the usual representation

in video processing based on strong edges such as JPEG. The first component (Y) denotes the

grey-scale value which contains a lot of the edge information. The Cb component holds the

blue difference component, and the Cr component holds the red difference component. These

two components are referred to as the chrominance components and are usually sub-sampled

to reduce the amount of data required to represent an image. The Y CbCr colour space is

often used, as it is the measurement space of colour sensors and is adapted to the human

visual system. By remaining in the sensor colour space, the noise characteristics will not be

disturbed.

• CIELAB Colour. CIELAB colour has 3 components (L, a, b) described by Chen [6]. These

components have been matched to the human perception of colour. As in YCbCr, images would

need to be transformed into this space, and the noise characteristics of the colour channels will

be disturbed.

Using colour attributes, obtaining the data inferring motion would still mean matching similar

colours from different spatial positions. If the colours and spatial properties form smooth geometric

features, then they may be related to each other.

Colour information in the image sequences is perceptually the information used in natural images to

discern objects and movement. The importance of this information is crucial and some characteristics
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are noted:

• Complete. The pixel information presents a smooth and complete representation of the in-

formation. If some pixels are missing or are corrupt, the video sequence would be deemed as

damaged. The focus of the tensor voting is not in this case used for in-painting and image

repair, although it has been used for this application in other works [27].

• Non-jarring. The representation of pixel flow is smooth. There may be times where an abrupt

change of direction is observed, such as when a ball bounces off a surface, but this is not true

for the greater portion of time in a video sequence.

• Stationary noise. The noise superimposed on the image due to non-ideal sensors remains

constant during the video sequence. If we assume the noise to be roughly Gaussian over one

or two pixels, it becomes an advantage as it prevents abrupt gradients in the image and is the

basis of many non tensor voting motion estimation techniques, such as an adaptive structure

tensor flow estimation algorithm by Liu [38].

The implication of these points is that colour is a very important data source, and that the decay in

importance when colour matching is used to determine motion should follow a gradual decay. As a

first-order estimate, the decay is deemed as a Gaussian decay in line with the tensor voting kernel.

Consolidating the data

A token possesses spatial information (x, y, t) as well as attributes (R,G,B) and is scaled to form

the first-order tensor ti = (kxxi, kyyi, ktti, kRRi, kGGi, kBBi). The scale factors affect the tensor

communication in defining the importance of the various components of the tensor on the voting

process. Generally the scale in the x and y direction is the same as the image has a square aspect

grid in x and y, meaning that kx = ky. The same argument applies to R, G and B, meaning

that kR = kG = kB . The number of scales can therefore be reduced to kt, kxy = kx = ky and

kRGB = kR = kG = kB . As an initial start point, the scales are all set to one although this is not

necessarily optimal. Normally the colour information occupies the space of R,G,B ∈ [0, 255] giving

colour a higher weighting in the tensor voting than the spatial coordinates. Note that the inclusion

of a scale on the components does not destroy any information as it is a linear operator.

3.2.3 How is the data grouped?

We need to determine which data is related to other data. The data can be grouped according to:
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• Attribute. The colour of a pixel as seen over several frames and its relation to the optical flow

constraint.

• Position. The data forms traces over time which is contained within the matching cone volume.

• Regions. Data over discrete regions moves similarly and smoothly when the data is within an

object.

In the spatio-temporal volume, the optical flow constraint requires that the pixels (xi, yi) representing

a point in the image on the reference plane, are represented as points in preceding and succeeding

frames (other time instants) given that no occlusion or disocclusion occurs. These traces can be

thought of as smoothly changing trajectories that change according to the object motion velocities

(vx, vy), which are also functions of time. These are referred to as fiber bundles in [45]. Tensor

voting is well suited to the problem of smoothly changing geometric features, such as these traces,

and does not require any further assumption about the rigidity of motion or apply any models, such

as affine, on the movement.

Once some estimate of motion (vx, vy) has been inferred from traces, data adjacent to each other

allows regions to be grouped. This is a second step in solving the motion estimation problem. The

regions must not contain boundaries as this will corrupt region motion estimation.
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3.3 Initial trace solution

An early attempt at locating motion traces tries to localise high contrast points found using corner

measures such as the SUSAN corner detector [57, 56] or the Harris detector [23]. The first-order

tensor tokens are made up as Pi = (xi, yi, ti). The sparse selection of these points includes any

measure of motion (vx, vy) that is found using block matching techniques with sub-pixel refinement.

The positions are given by Pi, and the direction of the tensor is determined from (vxi
, vyi

) encoded

as a vector Ei with vti
= 1. This vector is a tangential vector in the direction of motion.

A voter is determined at point P and a votee at point Q (both elements from Pi), the respective

tangential unit vectors are v̂ and û (both orthogonal unit vector elements from Ei). The whole axis

system is shifted such that P is at the origin. A vector b = p− q now describes the votee position.

The tangential vector v is converted into the normal form using nP = (v × b) × v̂. Using the

normal unit vector n̂P , the normal vote strength at the votee point Q can be computed according

to Equation 2.3.7. The stick vote becomes:

Vstick = VS2
stickvv>. (3.3.1)

In this formulation, all votes are collected per votee and summed, including the votee voting for

itself (perfectly aligned — zero distance in the kernel). The eigenvectors and eigenvalues are found

for all tensor elements Pi. In this formulation, with all the vectors v pointing in the same direction,

the saliency sought is a high line saliency (λ1 − λ2), and the direction given by ê1. The maximum

saliency is found over all i, and used to set a threshold of 1/3 of the maximum saliency. Any votee

locations found to have saliencies below this value are discarded (noise rejection), and the rest have

their Ei replaced with ê1 for each i. This forms the new improved 3D set of directions Erefi
.

A computer simulation in MATLAB was written to process a synthetic image created using the

tissue image as shown in Figure 3.3. The central disk section of this image was rotated from frame

to frame, while the rest was held static. For the synthetic image, the exact ground truth was

determined for comparative results and for each Pi an actual Eactuali was determined.

The synthetic image was processed with the control point extraction, block matching, and tensor

voting, to get a refined set Erefi
for each Pi that was not rejected as having a saliency that was

too low. Comparisons were made between the raw and actual and refined and actual motion vector

fields as contained in E actuali . This is shown in Figure 3.4.

The method of comparison between the actual motion vectors and calculated motion vectors was to

look at the dot product between the two motion vectors as given by αrefi
= arccos((urefi

, vrefi
, 1) •

(uactuali , vactuali , 1)). The same can be found for the raw values as αrawi
= arccos((urawi

, vrawi
, 1) •

(uactuali , v actuali , 1)). The mean and standard deviation values in degrees are given in Table 3.1



51

P

Q

s

l

r

θ

2θ

n̂P

n̂Q

v̂

û

Figure 3.2: 2D stick geometry with tangential vectors.

where the parameter α indicates the weighting coefficient of the curvature excluding the distance as

given later in Equation 2.3.7.

Table 3.1: Comparative angular errors (α is defined in Equation 3.4.1).

Case Mean Error STD Error

Raw,σ = 15,α = 1000 10.0 9.8
Ref,σ = 15,α = 1000 7.3 8.8

An improvement of 37% is noticed compared to the raw measurements. This method is suitable

for 3D tensors, but fails for any other dimensionality due to the fact that the cross product is only

defined in 3D. A generalised form of the cross product exists called a wedge product, which is valid

in N -dimensions, but the resultant is not a vector, but a 2-vector which is an order 2 tensor.
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Figure 3.3: Raw Motion Flow Field with refinement used as input to Pi and Ei .

(a) Full volume traces. (b) Detail of traces.

Figure 3.4: 3D traces based on tissue where the red traces indicate the raw measurements, black
represents ground truth and green represents the tensor results.
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(a) Voter (red) and votee (violet) point clouds. (b) Votee detail indicating the directions and
strengths (λ1ê1, λ2ê2, λ3ê3) of the spectral decom-
position of the second-order tensors.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.5: 3D representations of the simulated ball voting process using the normal kernel.

3.4 Symmetrical tangential voting in N dimensions

The initial attempt in Section 3.3 adjusted the kernel to do tangential voting by making use of a

cross product, thus limiting its use to 3D. Using normal tensor voting, the stick votes are normal to

the connecting vector between the voter and votee. When a ball vote is simulated, it is implemented

as uniform random direction unit vectors at a voter site which then use the tensor voting field to

produce a vote vector at the votee site for each voter vector. The ball vote for the normal kernel

given in Section 2.3 is shown in Figure 3.5. The surface renditions in the figures do not represent

actual voting tokens, but rather give an indication of the shape and structure of the underlying

kernel.

The eigenvector aligned to the connecting line between the voter and votee is the eigenvector ê3

associated with the smallest eigenvalue λ3. The other more dominant eigenvectors (ê1 and ê2) are
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(a) Voter (red) and votee (violet) point clouds. (b) Votee detail indicating the directions and
strengths (λ1ê1, λ2ê2, λ3ê3) of the spectral decom-
position of the second-order tensors from three vot-
ers.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.6: 3D representations of the simulated ball voting process using the normal kernel and
three voters in a line.
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normal to the connecting line with the disconcerting attribute that they may be orthogonal to each

other, but are not fixed or unique due to the radial symmetry of the votee cloud since they can spin

around the connecting line. In Figure 3.5(b) the calculated strengths of the eigenvalues (λ1, λ2, λ3)

are (125,116,21). These absolute values depend on the number of votes received by the votee. What

is of greater importance is the relationship of λ1 ≈ λ2 ¿ λ3. Repeating the voting process in a

tangential mode by stringing voters in a line, the contribution at the voters at the votee can be

seen in Figure 3.6. Figure 3.6(b) shows the individual spectral decompositions of the three voters

separately: the only aligned eigenvector directions are ê3. The other two eigenvectors (ê1 and ê2)

do not align themselves due to the circular symmetry. The small magnitude of the last eigenvalue

indicates that errors in tensor location will have large effects on the integrity of the voting as the two

dominant orthogonal components will adversely affect the result when the spectral decomposition is

carried out on the combined second-order tensor.

To change the behavior of the voting, a different voting kernel needs to be formulated that has a

dominant direction along the tangential direction, instead of in the normal direction as indicated

in Figure 2.10. Graphically, it would simply mean rotating this plot by π/2, but still preserving

the desirable radial decay and cone-like properties. This needs to be done without restricting the

dimensionality as was done in Section 3.3. The method proposed is to rotate the voter vector

direction by π/2. Due to the rotational symmetry we only need to deal with angles and dot products,

allowing the formulation to be applicable to N dimensions.

Using the geometry given in Figure 3.7, the vote strength is given in the same form as Equation 2.3.7:

VSsticktan
(s, κ) = exp−

(s2+ακ2)

σ2 , (3.4.1)

where we define the scalar strength variables as

r =
l

2| sin(α)| ; b =
l

2 cos(α)
; κ =

1

r
; 2θ = π − 2 arccos | sin(α)|; s = 2rθ. (3.4.2)

In order to correctly define the direction such that the vector field is smooth, symmetrical and rotates

in the same fashion as in Figure 2.10, we need to define the voter direction. The voter direction is

defined as v and will result in a direction given as u. The direction is found by determining the

lower center point (defined as the intersection the two lines defined by these vectors), which is a

distance b from the voter in the direction of the voter. The direction of u can be found as:

C = rv̂ + P; u = Q − C (3.4.3)

and subsequently the unit vector û can be found. The vote strength and direction is plotted in

Figure 3.8. The vector field is smooth and rotated π/2 radians compared to Figure 2.10.

Observing a simulated ball vote for the tangential vote as in Figure 3.9, it is noticed that the

eigenvector aligned with the connecting line between the voter and votee is the eigenvector ê1



56

P


Q


N̂P

N̂Q

θ

θ

α

α

l/2

l/2

s

r

b

v

u

Figure 3.7: Geometry of 2D tangential stick vote.

associated with the largest eigenvalue λ1. The other eigenvectors (ê2 and ê3) are normal to the

connecting line but are much smaller that λ1. In Figure 3.9(b) the calculated strengths of the

eigenvalues (λ1, λ2, λ3) are (37,4,4). The absolute values depend on the number of votes received,

so the relationship between the eigenvalues given as λ1 ¿ λ2 ≈ λ3 better defines the geometric

characteristics of the voting. Repeating the experiment where the voters are placed in a line, we

obtain results given in Figure 3.10. Figure 3.10(b) shows the individual spectral decompositions of

the three voters separately; the aligned eigenvector directions are ê1. The other two eigenvectors (ê2

and ê3) do not align themselves due to the circular symmetry but are now small in relation to λ1 so

the effects of errors in tensor location will not have large effects on the integrity of the voting. The

surface rendition in Figure 3.10(c) has two lobes which is desired structure aligned to the eigenvector

ê1 with the largest eigenvalue λ1.

The graphical results presented in this section describe a novel method of tangential tensor voting

as applied to motion trajectories that avoids using higher-order eigenvectors and eigenvalues to

determine the motion vector. By using a new voting kernel, the motion trajectory is aligned to the
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Figure 3.8: 2D VSsticktan
(x, y) showing both the strength and the vector field. Blue indicates low

strength and red indicates high strength.

first eigenvector and eigenvalue which increases stability of the tangential tensor voting process.
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(a) Voter (red) and votee (violet) point clouds. (b) Votee detail indicating the directions and
strengths (λ1ê1, λ2ê2, λ3ê3) of the spectral decom-
position of the second-order tensors.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.9: 3D representations of the simulated ball voting process using the tangential kernel.
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(a) Voter (red) and votee (violet) point clouds. (b) Votee detail indicating the directions and
strengths (λ1ê1, λ2ê2, λ3ê3) of the spectral decom-
position of the second-order tensors from 3 voters.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.10: 3D representations of the simulated ball voting process using the tangential kernel and
three voters in a line.
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3.5 Non-symmetrical tangential voting in N dimensions

A geometric feature that can have a lot of value is one that describes whether a votee is flanked

by tangential voters or whether it is at the end of a tangential line. When a votee is at the end of

a line, we refer to it as being an end-cap. This feature specifically demarcates motion boundaries

without having to look at motion estimation.

In order to skew the votee point cloud towards a voter in a tangential way, all that is needed is to

fold the symmetry around the connecting line to face away from the voter. This can be accomplished

by a subtle change of the direction of the tangential voting kernel. By referring to Figure 3.7 and

Equation 3.4.3, u can be found as:

C = rv̂ + P; u =

{

Q − C (if cos(α) ≥ 0)

C − Q (if cos(α) < 0).
(3.5.1)

The strength of the vote remains identical to the symmetric tangential stick vote strength as in

Figure 3.8, but the lower hemisphere directions are all reversed. The reversal can be seen by

observing the lower hemisphere directions in Figure 3.11. The directions now all flow towards the

center.

The skew tangential kernel is applied to a ball vote in Figure 3.12. The shape of the votee point cloud

is teardrop shaped in a direction away from the votee. The direction of the tangential eigenvector

ê1 may point either away from or towards (as in Figure 3.12(b)) the voter, and as such only gives

orientation information, not direction information. In the case of using 470 random stick votes

arranged as a ball, the second-order eigenvalues (λ1, λ2, λ3) are (400,33,33) and the skewness in the

direction of ê1 as defined in Equation 1.5.5 is -260. As a test, the symmetric tangential kernel is used

under the same conditions and yields the second-order eigenvalues (λ1, λ2, λ3) of (392,33,33) and the

skewness in the direction of ê1 as defined in Equation 1.5.5 of -14. From the small differences in

eigenvalues and the large difference in skewness, it is assumed that the non-symmetrical tangential

voting yields similar results in the second-order case, but the skewness measure differs considerably.

When the votee is flanked on either side by a voter as in Figure 3.13, the votee point cloud looks

similar to the symmetrical case. Using 470 random stick votes arranged in a ball from each voter,

the second-order eigenvalues (λ1, λ2, λ3) are (805,69,66) and the skewness in the direction of ê1 is

20. The skewness has dropped considerably, as would be expected due to the symmetry of the votee

point cloud around ê1. In the definition of skewness the sign would indicate clustering on either

the one projection side or the other. The eigenvector used to project the skewness is an indication

of orientation, not direction. For this reason the sign on the skewness losses meaning, but the

magnitude indicates the degree to which the votee is flanked in a tangential fashion.
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Figure 3.11: 2D 2D VSstickskew
(x, y) showing both the strength and the vector field. Blue indicates

low strength and red indicates high strength.

3.6 Summary of differences between skew-tangential second-
order voting and normal second-order voting

The primary reason for using a tangential representation compared to a normal representation of

the second-order tensor voting process is to allow alignment of the first eigenvector with the trace

of the motion of a pixel or group of pixels over a video sequence. In the normal representation, the

direction of the trace is given by the third eigenvector which has a small eigenvalue associated with

it which makes it more susceptible to noise as compared to the first eigenvector which has a large

eigenvalue associated with it.

When the kernel produces a symmetrical cloud of votes at the votee, no polarity information is

inferred even though orientation is inferred. By using a skew kernel, the polarity of the vote is

indicated by the skewness of the cloud of votes at the votee. The skewness is determined by using a

third-order tensor vote which has analogies to the third-order moment used in statistics to determine

the skewness of a probability distribution function. The strength of the third-order tensor vote that is

aligned with the first eigenvector of the second-order tensor vote determines the skewness parameter.
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(a) Voter (red) and votee (violet) point clouds. (b) votee detail indicating the directions of the spec-
tral decomposition of the second-order tensors with
the tangential direction ê1 visible down the axis of
symmetry of the votee point cloud.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.12: 3D representations of the simulated ball voting process using the skew tangential kernel.
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(a) Voter (red) and votee (violet) point clouds. (b) votee detail indicating the directions of the spec-
tral decomposition of the second-order tensors with
the tangential direction ê1 visible down the axis of
symmetry of the votee point cloud.

(c) Surface rendition of the cloud of votes at the vo-
tee.

Figure 3.13: 3D representations of the simulated ball voting process using the skew tangential kernel
with adjacent voters in a line.
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The skewness parameter rises as an edge is approached allowing for edge detection. Making use of a

skew kernel does not seem to affect the properties associated with the symmetrical kernel in terms

of the orientation of the first eigenvector.
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3.7 Algorithm development with an ideal single dimension
image

It is difficult to visualise the actions of an algorithm in a dimensionality that exceeds 3D. In order to

develop the tangential voting concept further, the spatio-temporal volume is simplified by dropping

one of the dimensions of the spatial term. This is done by observing a cut along a specific scan

line in an image sequence, while holding all vertical motion at zero. This is difficult to achieve in

a natural video sequence, so a synthetic sequence is used where two images are moved relative to

each other. The tissue image is moved from right to left at a specific horizontal velocity vtissue

while the earth image is moved from left to right at a specific horizontal velocity vearth over 50

frames. Figure 3.14 indicates the movements relative to each other. The movements are chosen

as vtissue = −1 pixels/frame and vearth = 2 pixels/frame such that the extracted image over time

remains crisp due to the synthetic movement always falling on pixel points in subsequent frames.

3.7.1 Second-order tangential voting

The votee points are made up of the central portion of frame 25. The sections close to the left

and right hand edges are not used to prevent any biasing due to edge effects. The candidates for

voters constitute all the other frames except for frame 25. In order to keep the problem tractable

and implementable, we limit the number of voters per votee to 32. This also fits in neatly with the

parallel computing architecture. These voters are selected to be:

• The closest Euclidean points to the votee, and

• The points that fall within a cone of interest with a cone slope of 5 pixels/frame.

The first-order tensors are made up of tn = (i, k,Ri, Gi, Bi), which indicates that one dimensional

position, frame, and colour are all used in the data. The components of the first-order tensor are

chosen to be as close as possible to the available raw data and not use inferred parameters such as

pixel velocities as this requires some form of flow estimation. The reduction of the 5D space to lower

dimension subspaces is not consistently possible due to the changing Ri, Gi, Bi values. Tangential

ball voting using the kernel described in Equation 3.4.2 is used with no alpha weighting (α = 1) and

a scale factor of σ = 10. The desired geometric feature is the feature that has a single tangential

component and the rest as normal components. The saliency is therefore described by λ1 − λ2 and

the direction is given by ê1.

To demonstrate the sensitivity of the tensor voting algorithm on a non-uniform random number

generator on the unit 5-sphere S5, the standard uniform random number generator described in
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(a) frame 1. (b) frame 25. (c) frame 50.

(d) Scan line 100 extracted and plotted over columns and frames.

Figure 3.14: Single dimension movement of a synthetic tissue earth image sequence.
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(a) Voter 1 (closest Euclidian voter). (b) Voter 17.

(c) Voter 32 (furthest Euclidian voter). (d) Cumulative effect of all voters.

Figure 3.15: Tangential ball vote process (using tensor representation tn = (i, k,Ri, Gi, Bi)) on the
votee marked as black disk with a non-uniform random number generator on the unit 5-sphere S5.
The voters are marked as blue circles, and the projection of the first two eigenvectors weighted with
their respective eigenvalues are shown as red and green lines emanating from the votee respectively.

Section 1.5.5 is used with projection onto the unit sphere in Figure 3.15. It can be seen that the

first eigenvector ê3 has a bias in direction as it should be more aligned to the voters.

By replacing the non-uniform random number generator on the unit 5-sphere S5 with a uniform

generator based on the Gaussian method described in Section 1.5.5 the results in Figure 3.16 look

far better aligned, verifying the importance of correct random number generation being applied to

the tensor voting problem.

The final result of 32 voters is also tested for the monochrome colour tensor tn = (i, k, Yi), the YCbCr

colour space tensor tn = (i, k, Yi, Cbi, Cri) and the CIELAB colour space tensor tn = (i, k, Li, Ai, Bi)

in relation to the RGB colour space tensor tn = (i, k,Ri, Gi, Bi) on an individual votee level as shown

in Figure 3.17. The analysis is done at this early stage to highlight the inclusion of voters in an
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(a) Voter 1 (closest Euclidian voter). (b) Voter 17.

(c) Voter 32 (furthest Euclidian voter). (d) Cumulative effect of all voters.

Figure 3.16: Tangential ball vote process (using tensor representation tn = (i, k,Ri, Gi, Bi)) on the
votee marked as black disk with a uniform random number generator on the unit 5-sphere S5. The
voters are marked as blue circles, and the projection of the first two eigenvectors weighted with their
respective eigenvalues are shown as red and green lines emanating from the votee respectively.
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(a) Monochrome colour space with tensor tn =
(i, k, Yi).

(b) YCbCr colour space with tensor tn =
(i, k, Yi, Cbi, Cri).

(c) CIELAB colour space with tensor tn =
(i, k, Li, Ai, Bi).

(d) RGB colour space with tensor tn =
(i, k, Ri, Gi, Bi).

Figure 3.17: Tangential ball vote process using several colour spaces on the votee marked as black
disk. The voters are marked as blue circles, and the projection of the first two eigenvectors weighted
with their respective eigenvalues are shown as red and green lines emanating from the votee respec-
tively.

individual voting process that are noticeably incorrect. Care is taken that the scale of all the colour

spaces remains similar to the RGB case to eliminate biases in favour of any single colour space.

From the distribution of voters, it seems that the initial motivation to use the RGB colour space is

valid.

Expanding on the single votee analysis on the one dimensional image as given in Figure 3.14(d),

tangential ball voting is applied to more of the votees on line 25, resulting in Figure 3.18. In the

figure, the saliency λ1 − λ2 is normalised to span [0, 1] such that strong saliency is represented by

white and low saliency is represented as black. The projection of the first eigenvector ê1 onto the

first two dimensions (x, z) is normalised and displayed as a directionless bar indicating the frame-

to-frame movement of colour, which is equivalent to vx. A measure of correctness is visually seen by
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the alignment to the apparent motion in the underlying image. Where the saliency is strong (white

dots), the orientations seem in good agreement with the motion. Weak saliency (darker dots) often

includes definite errors in orientation. By censoring low saliency votees, a better sparse estimate

of orientation is observed in Figure 3.18(d). An important feature of this vote is how close correct

votes are obtained to a moving boundary as can be seen on the right hand motion boundary. The

left hand motion boundary does not fare well due to the near-homogeneous colour at the boundary.

The motion estimates within the moving objects can be strengthened by formulating a dimension-

11 tensor of the form tn = (i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (case 1). The tokens

used for the dimension-11 tensor consist of the adjacent (left hand and right hand) pixel colour

values. Choosing the adjacent pixels is based on trying to use the video frame data directly instead

of using inferred values such as pixel velocities. The tokens are not orthogonal and an effort to

try and find an orthogonal space using techniques such as Principal Components Analysis (PCA)

or Karhunen Loeve Transform (KLT) would not be successful due to the varying correlation of the

tokens over the video frame. The fact that the tensor is not orthogonal can have an effect on the

basis of tensor fields being invalid. The differing tensor forms are enumerated as different cases later

in the thesis given in Table 3.2. From Figure 3.19, the orientations are good within the boundaries

of the moving object. The right hand motion boundary shows high saliency which is expected due

to the general high contrast in this region, but the orientations are erroneous. The left hand motion

boundary displays bleeding in that the orientation outside the boundary complies with the motion

inside the boundary. This is due to the homogeneous colour on the one side of the boundary not

contributing in a directional way to the tensor vote, allowing the i + 1 pixels to dominate.

3.7.2 Third-order tangential voting

The non-symmetrical kernel of Section 3.5 is used on the dimension-5 tangential tensor vote on

line 25 of the image. Using Equation 1.5.5 with the eigenvector ê1, the tensor skewness ‖Se1‖ is

indicated in Figure 3.20. The tensor skewness graph is fairly erratic, although a correspondence to

the moving object boundaries can be seen in Figure 3.20(b). The structure of the tensor skewness

graph changes little when the number of voters are increased or the number of random ball vectors

per voter is increased by increasing the iterations in the Monte Carlo analysis given as f . The normal

variate pseudorandom number generator was compared to MATLAB’s built in generator and the

Box-Muller method. The Box-Muller method produced inferior results compared to the MATLAB

generator, especially for the third-order tensor skewness. For this reason, the Ziggurat method [41]

was substituted in the code for comparable results to MATLAB.

Extending the non-symmetrical kernel on the dimension-11 tensor (Case 1), similar tests are run

resulting in Figure 3.21. Structure is noticeable in the skewness graph.
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(a) Saliency threshold of 100% (no censorship).

(b) Saliency threshold of 75%.

(c) Saliency threshold of 50%.

(d) Saliency threshold of 25%.

Figure 3.18: One dimensional tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi).
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(a) Saliency threshold of 100% (no censorship).

(b) Saliency threshold of 75%.

(c) Saliency threshold of 50%.

(d) Saliency threshold of 25%.

Figure 3.19: One dimensional tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (Case 1).
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(a) Uncensored tensor vote using tn = (i, k, Ri, Gi, Bi).

(b) Column aligned tensor skewness ‖Se1‖.

Figure 3.20: One dimensional skew tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi).
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(a) Uncensored tensor vote using tn = (i, k, Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (Case 1).

(b) Column aligned tensor skewness ‖Se1‖.

(c) Column aligned tensor skewness loge(‖Se1‖).

Figure 3.21: One dimensional skew tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (Case 1).
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Extending the tensor further to include two adjacent pixels in the tensor representation, we get

a dimension-17 tensor problem. Using two adjacent pixels horizontally maps to Case 4 given in

Table 3.2. The same test is run resulting in Figure 3.22. Significant suppression of the noise results,

but slight degradation in edge selectivity can be seen on the left hand edge of the tensor skewness

graph. This is to be expected due to the averaging effect that the higher order tensor is causing due

to adjacent pixel inclusion.
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(a) Uncensored tensor vote using tn = (i, k, Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1, Ri−2, Gi−2, Bi−2, Ri+2,

Gi+2, Bi+2) (Case 4).

(b) Column aligned tensor skewness ‖Se1‖.

(c) Column aligned tensor skewness loge(‖Se1‖).

Figure 3.22: One dimensional skew tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1, Ri−2, Gi−2, Bi−2, Ri+2, Gi+2, Bi+2) (Case 4).
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(a) Ideal tissue earth image (b) Interpolated tissue earth image

Figure 3.23: Segment of frame 25 of the synthetic tissue earth image sequence showing the effect of
interpolation.

3.8 Algorithm development with an interpolated single di-
mension image

3.8.1 Introduction

In the previous section, an ideal synthetic sequence of images was used to develop the tensor voting

algorithm. When the synthetic tissue earth image sequence is regenerated using non-integer object

velocities, and the pixel values are generated using bicubic interpolation, the trace velocity lines do

not intersect the discrete pixel points from image to image. In the regenerated tissue earth image

sequence the tissue image is moved from right to left at a horizontal velocity vtissue = −1.12 while

the earth image is moved from left to right at a horizontal velocity vearth = 1.65 over 50 frames.

The effect of the interpolation on the pixel colour values can be seen in Figure 3.23 by looking down

the motion traces and observing the slow blending of colours.

From the previous section, the best results were obtained using tensor representations of case 1

and case 4 from Table 3.2. Case 1 and case 4 are repeated with the interpolated synthetic tissue

earth image sequence resulting in Figure 3.24 and Figure 3.25 respectively. The second-order tensor

orientation is still well aligned to the underlying motion, but the skewness ‖Se1
‖ does not indicate

the boundaries in case 1 at all, and only vaguely represents the boundaries in case 4. The third-order

tensor voting seems to be very sensitive to imperfections in the data introduced by the interpolation

process.
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(a) Uncensored tensor vote using tn = (i, k, Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (Case 1).

(b) Column aligned tensor skewness ‖Se1‖.

(c) Column aligned tensor skewness loge(‖Se1‖).

Figure 3.24: One dimensional skew tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1) (Case 1) on an interpolated image set.
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(a) Uncensored tensor vote using tn = (i, k, Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1, Ri−2, Gi−2, Bi−2, Ri+2,

Gi+2, Bi+2) (Case 4).

(b) Column aligned tensor skewness ‖Se1‖.

(c) Column aligned tensor skewness loge(‖Se1‖).

Figure 3.25: One dimensional skew tangential tensor vote using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1, Ri−2, Gi−2, Bi−2, Ri+2, Gi+2, Bi+2) (Case 4) on
an interpolated image set.
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3.8.2 Effect of varying the colour constant kRGB

To try mitigate the imperfections in the colour RGB data, the constant kRGB is reduced from

kRGB = 1 to several lower values. By reducing kRGB the tensor colour data clusters closer together

while the spatial x, y, t components of the tensor become more dominant in the tensor voting process.

In Figure 3.26 the constant kRGB is changed, and the skewness ‖Se1
‖ observed. The effect of changing

the constant kRGB seems to allow a marginal improvement in the skewness ‖Se1
‖ at kRGB = 0.25

indicating only a minor effect on the skewness.

3.8.3 Effect of voter pre-alignment

A method that can potentially increase the accuracy of the tensor voting approach is to allow two

rounds of tensor voting to take place similar to the flow used by [49] and shown in Figure 2.13. In

the discussion of the generalised tensor flow diagram in Figure 2.13, the process allows data points

to be censored and filled in using densification. This thesis attempts not to infer information, but

rather to use information held in the pixels. The two rounds of voting allow a select set of voter

tensors to become votees. The tensor voting process allows the voter set to contain more orientation

information. A flow diagram showing the stages of voting is shown in Figure 3.27 which makes use

of the information available in the pixels, and does not infer information.

In the flow diagram shown in Figure 3.27 the various stages are described:

• Selection of votee tokens. The selection of input votee tokens is based on the requirement of

the user but may include all the pixels in the regions under analysis.

• Find m closest voter tokens per votee for all votees. Using normal Euclidian distances between

tokens (including the effects of kt and kRGB), the m closest voter pixel positions are chosen and

collated into a set. The value of m is set at m = 10 empirically to both save on computation,

but still have desired effects on the voting.

• Use voter token set as votees. A temporary votee set comprising of all the selected voters is

compiled for tensor voting.

• Ball tensor vote. A ball tensor vote is carried out at all the temporary votee tokens to infer

features to them. The features are held in the eigenvalues and eigenvectors at each temporary

votee token.

• Reinclude voter orientations into voter token set. A new voter token set is made up with specific

tokens containing the eigenvalues and eigenvectors to allow for orientated tensor voting.
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(a) kRGB = 0.75.

(b) kRGB = 0.5.

(c) kRGB = 0.25.

Figure 3.26: Column aligned tensor skewness ‖Se1‖ using a tensor representation of tn =
(i, k,Ri, Gi, Bi, Ri−1, Gi−1, Bi−1, Ri+1, Gi+1, Bi+1, Ri−2, Gi−2, Bi−2, Ri+2, Gi+2, Bi+2) (Case 4) on
an interpolated image set for different kRGB values.
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Selection of votee tokens


Find m closest voter tokens per


votee for all votees


Use voter token set as votees


Ball tensor vote


Reinclude voter orientations into


voter token set


Orientated tensor voting at votee


sites


Features


Figure 3.27: Voter pre-alignment tensor voting flow diagram.
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• Orientated tensor voting at votee sites. The original set of votee tokens is used as votee tokens,

and the new voter token set is used to vote at the votee sites. The number of orientated voters

per votee does not make up the full complement of voters per votee (set at 32), so a mixture

of ball and orientated votes are collected at each votee site.

• Features. The features such as skewness are collected at each votee site.

The selection of the closest voter tokens is based on the Euclidean distance from the original votee

tensors and varies according to kRGB . In Figure 3.28 the effects of the voter pre-alignment on a

single votee orientation are shown in red. Also shown is the result of a standard ball vote at the

votee site which is shown in green. The orientations of the pre-alignment and the ball vote are very

similar. When kRGB becomes small (kRGB = 0.25), the voters start clustering around the voter

with little regard to pixel colour information and the votee orientation is less aligned to the actual

velocity.

In order to determine the effect on skewness, more votees are included and simulations run for several

kRGB values. The effect of kRGB on linear skewness ‖Se1
‖ is shown in Figure 3.29. The skewness

using only ball voting shown in Figure 3.26 and pre-alignment (m = 10) of the voters shown in

Figure 3.29 does not show any noticeable improvement in determining the motion boundaries as

seen in Figure 3.22.

3.8.4 Skewness over spatial dimensions only

There may be an effect on skewness induced by the colour dimensions of the tensor encoding. The

skewness calculation of Equation 1.5.5 is reduced by limiting the indices to the spatial dimensions

(in this case 2 dimensions) and ignoring the rest:

Sei
=

2
∑

j,k,l=1

Tjkleij
eik

eil
. (3.8.1)

The simulation is run for both the pre-alignment of voters and the ball vote for case 4 with kRGB = 1

in Figure 3.30. Both the pre-aligned vote and the ball vote do not show any improvement on localising

the motion boundaries using the skewness measure.

3.8.5 Summary

All the techniques used to mitigate the effect of interpolation in this section on the skewness ‖Se1
‖

did not visually indicate the motion boundaries well.
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(a) kRGB = 1.

 

(b) kRGB = 0.75.

 

(c) kRGB = 0.5.

 

(d) kRGB = 0.25.

Figure 3.28: A votee (indicated with square marker) with the 10 closest Euclidean voters. The voter
orientations are shown in blue, the normal ball vote (case 4) at the votee is shown in green, and the
result from pre-alignment of voting at the votee (case 4) is shown in red.
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(a) kRGB = 1.

(b) kRGB = 0.75.

(c) kRGB = 0.5.

(d) kRGB = 0.25.

Figure 3.29: Column aligned tensor skewness ‖Se1
‖ using pre-alignment (m = 10) tensor voting on

a case 4 tensor representation of on an interpolated image set for different kRGB values.
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(a) Pre-alignment voters (kRGB = 1).

(b) Ball voters (kRGB = 1).

Figure 3.30: Case 4 column aligned tensor skewness ‖Se1‖ using only spatial dimensions in skewness
calculation.
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In classical block matching methods, the effects of noise and interpolation are mitigated by increasing

the size of the matching region. A similar approach can be used for tensor voting by encoding more

pixels into the tensor. The case 4 encoding already uses pixels that are two pixels away from the

central pixel which decreases the ability to find boundaries accurately. Increasing the number of

pixels used in the tensor is deferred to the two-dimensional analysis where pixels from the rows may

also be used.
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3.9 Skewness in tensor voting

The edge boundaries in Figure 3.21(b) display a characteristic shape due to the votee approaching

a more and more skewed position which maximises on the boundary. The tensor skewness measure

follows the path of the dominant eigenvector ê1. What is illustrated in the figures is the (x, z)

projection of the dominant eigenvector ê1. In the case of a stationary object, the ê1 projection

would be zero, and the characteristic tensor skewness graph would only show a large value if the

analysed z was at a boundary. For this reason, the x axis analysis only provides an indication of

structure in the case of moving objects.

The tensor skewness climbs as an approximate exponential ex function towards the boundary and

is only evident where the motion trace is ending (occlusion) or starting (disocclusion). A log plot

of the tensor skewness in Figure 3.21(c) shows a linear region confirming the exponential nature of

the tensor skewness graph.

The occlusion and disocclusion are relevant in causal analysis where no time reversal is possible.

In the case of non-causal analysis, occlusion and disocclusion lose meaning as occlusion in forward

time is disocclusion in reverse time. Due to the non-causal approach, the ending of a motion trace

is referred to as a left hand trace, and the starting of a motion trace is referred to as a right hand

trace. We refer to the traces as left hand movement and right hand movement respectively.

The one-sided nature of the climb in tensor skewness is due to the central moving part not experienc-

ing any occlusion or disocclusion in line 25. This information can also be used to determine layering

of the objects in a video sequence. In a video scene, various objects can occlude and disocclude

each other. In the tensor framework, an image pixel Ii,k ∈ Ω is assigned to be part of a motion

object Θi and not as part of an edge of a moving object. Figure 3.31 shows a simple scenario of a

foreground object Θ1 moving over a background Θn. The tensor skewness graph would be able to

indicate where a foreground object would be occluding or disoccluding the background. It is also

possible to determine which pixels belong to Θi.

It is also evident that there are small portions of a foreground object Θ1 where neither occlusion

or disocclusion takes place. This is where the relative motions are parallel to each other. In this

region, tensor skewness provides no information of a moving object boundary. If the projection

of the direction of the eigenvector ê1 is taken, it is normally found that the directions in the two

adjacent objects are opposite and parallel. This is due to the skew kernel adding a higher degree

of direction to the eigenvector than the symmetric eigenvector. This information could be used to

bridge the gaps where the tensor skewness measure fails.

The decay on the tensor skewness is directly related to the scale constant σ in the direction of the
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Figure 3.31: A foreground object Θ1 (red) moving over a background object Θn (grey) causing
occlusion or left hand movement (yellow) and disocclusion or right hand movement (blue)

eigenvector ê1. The larger the value of σ, the longer the tail of the skewness graph. Observing

Figure 3.20(b), Figure 3.21(b), and Figure 3.22(b), it is noted that the exponential decay does not

seem to be related to the dimensionality of the problem.

In filtering theory, a matched filter is deemed optimal in retrieving a signal of known shape in a

noisy environment. The shape of the impulse response of the filter corresponds to the shape of the

desired signal. Left hand and right hand traces are reversed shapes that can be derived from the

same filter. The impulse response of a matched filter would be a filter with one half an exponential

decay, and the other half a flat negative value as shown in Figure 3.32. The exponential section

follows y = e
− x

η2 , and the whole filter is made zero mean.

Applying this filter in the direction of ê1 is difficult due to the data only being available on a regular

grid. In order to simplify this, the filter is applied in the x̂, ŷ and ẑ directions. Their orthogonality

allows a linear recombination of the result. For the purposes of the analysis, the filter is applied on

the tensor skewness graph in the x direction. This results in a filtered domain graph for both the

left hand and right hand movement cases.
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(a) Left hand movement filter.
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(b) Right hand movement filter.

Figure 3.32: Matched left hand and right hand movement filters for various η.

Once the filter has been applied, the local peaks in the filtered domain are found. If the peak is

significant ( > 50% of the maximum of the filtered skewness values), then an occlusion or disocclusion

boundary is declared. These results are applied to the two dimensional case in the following section.
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3.10 Algorithm development with a two dimensional image

Now that the visualization of the single dimension has indicated a fairly generic algorithm, it is

extended to a two dimensional image that is part of a spatio-temporal volume.

3.10.1 Encoding of tensors

There are several methods of encoding the pixel information into a tensor representation. It is

important to keep the elements of the tensor encoding for a pixel Ii,j,k extremely localised around

the pixel. The pixels encoded all belong on the same x, y plane. The z plane is not used as motion

information will be encoded into the tensor, which may not be stationary. Several arrangements of

increasing tensor dimensionality are proposed in Figure 3.33 and are enumerated in Table 3.2. As

the number of adjacent pixels increases, the dimensionality as given in Table 3.2 in brackets rises

rapidly. For one dimensional analysis, cases 0, 1 and 4 are used as they have no y component. In

the two dimensional analysis, cases 0, 3, 6, 7 and 8 are looked into. Case 8 is special in that the

RGB colour information is not encoded in the adjacent pixels in order to reduce the dimensionality

at the cost of selectivity. Using case 8 with all the RGB colour information included is used in a

simplified voting method and is denoted as case 10.

As the dimensionality rises, the computational load and memory requirements rise. The highest

implemented dimensionality for ball voting in this thesis is 42 (case 7). A simplified stick vote is

used in this thesis up to a dimension of 72 (case 10).

3.10.2 Voter selection in the image volume

For the different cases, the voter selection for an arbitrary point in the moving earth sequence is

chosen. Using the Euclidean distance between the votee and the other 3D pixel points, the closest

32 voters are chosen to participate in the vote. In [49], the tensor is made up from potentially good

matches using a correlation technique with differing size windows. The normal correlation techniques

determine the correlation of a potential voter with the votee. Including the adjacent pixels in the

tensor encoding automatically incorporates this form of correlation and it extends it in including 32

of the closest candidates.

The relationship of voter selection based on the closest 32 Euclidean voters to the votee are shown

in Figures 3.34 to 3.38. This is indicated for both a single votee showing the 3D positioning in x, y, z

of the voters and their distance which is indicated as the greyscale colour of the voter. The closer

the voter, the brighter the voter.
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(i) case 8 and 10 (N = 30 and N =
72).

Figure 3.33: Colour tensor encoding pixel arrangements.
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Table 3.2: Tensor encoding cases.

Case Colour tensor encoding (dimension-N) Monochrome tensor encoding
(dimension-N)

0 i, j, k,Ri,j , Gi,j , Bi,j (N=6) i, j, k, Yi,j (N=4)
1 i, j, k,Ri,j , Gi,j , Bi,j ,

Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j

(N=12)

i, j, k, Yi,j , Yi−1,j , Yi+1,j (N=6)

2 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1

(N=12)

i, j, k, Yi,j , Yi,j−1, Yi,j+1 (N=6)

3 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j ,
Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1

(N=18)

i, j, k, Yi,j ,Yi−1,j , Yi+1,j ,Yi,j−1, Yi,j+1

(N=8)

4 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j ,
Ri−2,j , Gi−2,j , Bi−2,j ,Ri+2,j , Gi+2,j , Bi+2,j

(N=18)

i, j, k, Yi,j ,Yi−1,j , Yi+1,j ,Yi−2,j , Yi+2,j

(N=8)

5 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1,
Ri,j−2, Gi,j−2, Bi,j−2,Ri,j+2, Gi,j+2, Bi,j+2

(N=18)

i, j, k, Yi,j ,Yi,j−1, Yi,j+1,Yi,j−2, Yi,j+2

(N=8)

6 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j ,
Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1

Ri−1,j−1, Gi−1,j−1, Bi−1,j−1, Ri−1,j+1,
Gi−1,j+1, Bi−1,j+1, Ri+1,j−1, Gi+1,j−1,
Bi+1,j−1, Ri+1,j+1, Gi+1,j+1, Bi+1,j+1 (N=30)

i, j, k, Yi,j ,Yi−1,j , Yi+1,j ,Yi,j−1, Yi,j+1,
Yi−1,j−1, Yi−1,j+1,Yi+1,j−1, Yi+1,j+1

(N=12)

7 i, j, k,Ri,j , Gi,j , Bi,j ,
Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j ,
Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1,
Ri−1,j−1, Gi−1,j−1, Bi−1,j−1, Ri−1,j+1,
Gi−1,j+1, Bi−1,j+1, Ri+1,j−1, Gi+1,j−1,
Bi+1,j−1, Ri+1,j+1, Gi+1,j+1, Bi+1,j+1

Ri,j−2, Gi,j−2, Bi,j−2,Ri,j+2, Gi,j+2, Bi,j+2,
Ri−2,j , Gi−2,j , Bi−2,j ,Ri+2,j , Gi+2,j , Bi+2,j

(N=42)

i, j, k, Yi,j ,Yi−1,j , Yi+1,j ,Yi,j−1, Yi,j+1,
Yi−1,j−1, Yi−1,j+1,Yi+1,j−1, Yi+1,j+1,
Yi,j−2, Yi,j+2,Yi−2,j , Yi+2,j (N=16)

8 i, j, k,Ri,j , Gi,j , Bi,j , Yi−1,j , Yi+1,j ,Yi,j−1, Yi,j+1,
Yi−1,j−1, Yi−1,j+1,Yi+1,j−1, Yi+1,j+1,
Yi,j−2, Yi,j+2,Yi−2,j , Yi+2,j ,
Yi−2,j−2, Yi−2,j+2,Yi−2,j−2, Yi−2,j+2,
Yi−1,j−2, Yi−1,j+2,Yi+1,j−2, Yi−1,j−2,
Yi−2,j−1, Yi+2,j−1,Yi−2,j+1, Yi+2,j−1 (N=30)

i, j, k, Yi,j ,Yi−1,j , Yi+1,j ,Yi,j−1, Yi,j+1,
Yi−1,j−1, Yi−1,j+1,Yi+1,j−1, Yi+1,j+1,
Yi,j−2, Yi,j+2,Yi−2,j , Yi+2,j ,
Yi−2,j−2, Yi−2,j+2,Yi−2,j−2, Yi−2,j+2,
Yi−1,j−2, Yi−1,j+2,Yi+1,j−2, Yi−1,j−2,
Yi−2,j−1, Yi+2,j−1,Yi−2,j+1, Yi+2,j−1

(N=28)
10 i, j, k,Ri,j , Gi,j , Bi,j ,Ri−1,j , Gi−1,j , Bi−1,j ,Ri+1,j , Gi+1,j , Bi+1,j ,

Ri,j−1, Gi,j−1, Bi,j−1,Ri,j+1, Gi,j+1, Bi,j+1,Ri−1,j−1, Gi−1,j−1, Bi−1,j−1,
Ri−1,j+1, Gi−1,j+1, Bi−1,j+1,Ri+1,j−1, Gi+1,j−1, Bi+1,j−1,
Ri+1,j+1, Gi+1,j+1, Bi+1,j+1,Ri,j−2, Gi,j−2, Bi,j−2,Ri,j+2, Gi,j+2, Bi,j+2,
Ri−2,j , Gi−2,j , Bi−2,j ,Ri+2,j , Gi+2,j , Bi+2,j ,Ri−2,j−2, Gi−2,j−2, Bi−2,j−2,
Ri−2,j+2, Gi−2,j+2, Bi−2,j+2,Ri−2,j−2, Gi−2,j−2, Bi−2,j−2,
Ri−2,j+2, Gi−2,j+2, Bi−2,j+2,Ri−1,j−2, Gi−1,j−2, Bi−1,j−2,
Ri−1,j+2, Gi−1,j+2, Bi−1,j+2,Ri+1,j−2, Gi+1,j−2, Bi+1,j−2,
Ri−1,j−2, Gi−1,j−2, Bi−1,j−2,Ri−2,j−1, Gi−2,j−1, Bi−2,j−1,
Ri+2,j−1, Gi+2,j−1, Bi+2,j−1,Ri−2,j+1, Gi−2,j+1, Bi−2,j+1,
Ri+2,j−1, Gi+2,j−1, Bi+2,j−1(N=72)
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(a) Voters around a votee. Voter markers get darker
with increasing Euclidean distance from votee. Mo-
tion vectors shown as red line through votee.

(b) A small subset of votees indicating motion esti-
mate consistency.

Figure 3.34: 3D image volume voter-votee relationship for case 0 encoding of the tensors.

The projection of the first eigenvector ê1 into the 3D space is also shown to indicate the estimate of

the motion vector. The accuracy of the estimate is indicated by showing a small sub-set of votees

and their motion vector estimates. In case 0, the motion vector estimates are fairly disorganised,

but still have some degree of directionality. In case 3 and above, the motion vector estimates seem

good with fairly little improvement as the dimensionality grows.

3.10.3 Analysis of two dimensional voting

In order to analyse the tangential tensors in the two dimensional plane the tissue-earth sequence

used in the single dimensional analysis is used. The earth moves to the right, while the tissue moves

slowly to the left. This motion is suitable for the further analysis as the skewness measure is analysed

in the x direction only in the results. The motion vectors will be aligned in the x direction with no

y component. This allows easy visual orientation checks of the tangential tensor voting approach.

Simulations on the tissue-earth sequence are run for cases 0, 3, 6, 7 and 8 which are the cases relevant

to the two dimensional image in a spatio-temporal volume. In these simulations, the scale factor

σ = 20, the number of iterations f = 10000 and the number of voters per votee is set at 32. A single

ball vote pass is done with no removal or interpolation of data. In order to get an overall image of

the effect of the tensor voting, only half the two dimensional image is shown. Figures 3.39 to 3.43

show the saliency of the first eigenvector ê1 as well as its projection on the two dimensional x, y

plane. The projection is the orientation of the motion vector. Also shown are the tensor skewness

measures in the two dimensional plane. This is referred to as the Tensor Skewness Map or TS map.

Both the overall effect and the detail are shown. In the detail, the motion vector orientations can
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(a) Voters around a votee. Voter markers get darker
with increasing Euclidean distance from votee. Mo-
tion vectors shown as red line through votee.

(b) A small subset of votees indicating motion esti-
mate consistency.

Figure 3.35: 3D image volume voter-votee relationship for case 3 encoding of the tensors.

(a) Voters around a votee. Voter markers get darker
with increasing Euclidean distance from votee. Mo-
tion vectors shown as red line through votee.

(b) A small subset of votees indicating motion esti-
mate consistency.

Figure 3.36: 3D image volume voter-votee relationship for case 6 encoding of the tensors.
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(a) Voters around a votee. Voter markers get darker
with increasing Euclidean distance from votee. Mo-
tion vectors shown as red line through votee.

(b) A small subset of votees indicating motion esti-
mate consistency.

Figure 3.37: 3D image volume voter-votee relationship for case 7 encoding of the tensors.

(a) Voters around a votee. Voter markers get darker
with increasing Euclidean distance from votee. Mo-
tion vectors shown as red line through votee.

(b) A small subset of votees indicating motion esti-
mate consistency.

Figure 3.38: 3D image volume voter-votee relationship for case 8 encoding of the tensors.
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(a) Saliency over half the image. (b) Detail of saliency.

(c) TS map over half the image. (d) Detail of TS map.

Figure 3.39: Case 0 tensor voting applied to the tissue earth ideal sequence.

be seen which are horizontal due to no y component in the motion.

The case 0 saliency in Figure 3.39 does not contain much structure, as can be seen by the motion

vector orientations being inconsistent in places. Even though the motion vector estimation is not

good, the TS map still shows structure at the occluding and disoccluding boundaries.

The case 3 saliency in Figure 3.40 shows good saliency, as evidenced by the bright saliency map.

There is a section on the left where the saliency breaks down slightly. This is due to an area which has

few features and can be expected. The motion vector orientations are consistent in the x direction,

and the TS map shows good structure at the occluding and disoccluding boundaries.

The results of case 6 in Figure 3.41 show little improvement over case 3. In the cases of pixel aliasing

and noise, there may be an advantage to using case 6.
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(a) Saliency over half the image. (b) Detail of saliency.

(c) TS map over half the image. (d) Detail of TS map.

Figure 3.40: Case 3 tensor voting applied to the tissue earth ideal sequence.
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(a) Saliency over half the image. (b) Detail of saliency.

(c) TS map over half the image. (d) Detail of TS map.

Figure 3.41: Case 6 tensor voting applied to the tissue earth ideal sequence.
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(a) Saliency over half the image. (b) Detail of saliency.

(c) TS map over half the image. (d) Detail of TS map.

Figure 3.42: Case 7 tensor voting applied to the tissue earth ideal sequence.
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(a) Saliency over half the image. (b) Detail of saliency.

(c) TS map over half the image. (d) Detail of TS map.

Figure 3.43: Case 8 tensor voting applied to the tissue earth ideal sequence.

The results of case 7 in Figure 3.42 show a degradation. This is probably due to the high dimen-

sionality (N = 42) that causes inconsistencies in calculation. The effects of higher dimensionality

on the Monte Carlo analysis are analysed in the next section.

The results of case 8 in Figure 3.43 show consistency with case 3 and case 6. The detail on the

skewness also shows the averaging effect of the wider kernel in Figure 3.43(d), where there is a 2 pixel

offset to the right. The effect of averaging is not wanted in trying to determine motion boundaries,

and as such this case has limited use.

The occluding and disoccluding exponential filters are applied with η = 2. The exponential filters

are only applied in the x-direction as the motion is only in that direction.

In case 0 the results of the left hand and right hand movement filters and detectors can be seen in Fig-

ure 3.44. The difference in detection of occlusion in Figure 3.44(a) and disocclusion in Figure 3.44(e)
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(a) Left hand movement filter results. (b) Detail of left hand movement filter results.

(c) Left hand movement filter detection at 50% of
maximum.

(d) Detail of left hand movement detection.

(e) Right hand movement filter results. (f) Detail of right hand movement filter results.

(g) Right hand movement filter detection at 50% of
maximum.

(h) Detail of right hand movement detection.

Figure 3.44: Case 0 TS Map passed through left hand and right hand movement filters.
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is the wider detection swathe on the side of the object of interest. The swathe approximately borders

the edge of the moving object, and the side which it occurs depends whether the motion is of an

occluding or disoccluding nature. In case 0, the filters give a visual indication that the occluding and

disoccluding structure is present, but the detections show fairly poor performance in discriminating

the occluding and disoccluding boundary.

In case 3 the results of the occluding and disoccluding filters and detectors can be seen in Figure 3.45.

When compared to case 0, the filter responses are much clearer in highlighting the occluding and

disoccluding boundaries. The occluding and disoccluding detectors perform very well clearly demar-

cating the boundaries. A false detection is found on the left due to an ambiguous motion caused by

aliasing.

In case 6 the results of the occluding and disoccluding filters and detectors can be seen in Figure 3.46.

Case 6 gives very similar results to case 3. Considering that the images are ideal, case 6 is expected

to perform better than case 3 in non-ideal (interpolation and noise) conditions. The occluding and

disoccluding detectors perform very well, clearly demarcating the boundaries.

In case 7 the results of the occluding and disoccluding filters and detectors can be seen in Figure 3.47.

The results of case 7 are not as good as case 3, 6 and 8 due to the high dimensionality. The poor

result leads to more analysis later on the Flower Garden natural image sequence to try understand

the problems associated with high dimensionality in tangential tensor voting.

In case 8 the results of the occluding and disoccluding filters and detectors can be seen in Figure 3.48.

Case 8 gives very similar results to case 3 and 6. The major difference is the effect of the filter width

on the clear demarcation of the boundary. The offset on the detections is not only due to the

apparent lag of the filter, but the filter seems to be averaging the edge confirming the hypothesis

that larger regions of support affect the edge detection capability of the tensor voting framework.

In this section several of the different tensor encodings are applied to an ideal tissue earth image

sequence. The reason for doing this is to determine at what stage does an increase in tensor

encoding dimensionality have little effect on detecting occlusions and disocclusions. The increase

in tensor encoding also affects the ability to discriminate edges accurately. From the results given

in Figures 3.44 to 3.48, case 6 emerges as most appropriate in terms of detecting occlusions and

disocclusions. Case 3 is also able to discriminate well, but may perform poorly under natural

conditions.
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(a) Left hand movement filter results. (b) Detail of left hand movement filter results.

(c) Right hand movement filter detection at 50% of
maximum.

(d) Detail of right hand movement detection.

(e) Disocclusion filter results. (f) Detail of right hand movement filter results.

(g) Right hand movement filter detection at 50% of
maximum.

(h) Detail of right hand movement detection.

Figure 3.45: Case 3 TS Map passed through left hand and right hand movement filters.
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(a) Left hand movement filter results. (b) Detail of left hand movement filter results.

(c) Left hand movement filter detection at 50% of
maximum.

(d) Detail of left hand movement detection.

(e) Right hand movement filter results. (f) Detail of right hand movement filter results.

(g) Right hand movement filter detection at 50% of
maximum.

(h) Detail of right hand movement detection.

Figure 3.46: Case 6 TS Map passed through left hand and right hand movement filters.
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(a) Left hand movement filter results. (b) Detail of left hand movement filter results.

(c) Left hand movement filter detection at 50% of
maximum.

(d) Detail of left hand movement detection.

(e) Right hand movement filter results. (f) Detail of right hand movement filter results.

(g) Right hand movement filter detection at 50% of
maximum.

(h) Detail of right hand movement detection.

Figure 3.47: Case 7 TS Map passed through left hand and right hand movement filters.
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(a) Left hand movement filter results. (b) Detail of left hand movement filter results.

(c) Left hand movement filter detection at 50% of
maximum.

(d) Detail of left hand movement detection.

(e) Right hand movement filter results. (f) Detail of right hand movement filter results.

(g) Right hand movement filter detection at 50% of
maximum.

(h) Detail of right hand movement detection.

Figure 3.48: Case 8 TS Map passed through left hand and right hand movement filters.
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(a) ê1 orientation with N = 42 and f = 1000. (b) ê1 orientation with N = 42 and f = 30000.

Figure 3.49: Twenty Monte Carlo estimations of the first eigenvectors ê1 orientation from the votee
towards the voter.

3.11 High dimensionality tensor voting Monte Carlo analysis

A degradation of the skewness measure shown in Figure 3.37 for case 7 is observed. In order to

understand this better, the interaction between a single voter and votee is analysed for varying

dimensionalities using the Monte Carlo methods.

As a parameter to this analysis, the number of iterations f is varied. The other parameters are held

constant at nominal values of σ = 10, α = 1, kt = 1, kRGB = 1 and kxy = 1. The distance between

the voter and votee in N dimensional space is also kept constant. Twenty independent Monte Carlo

runs are done to find the projection of the first eigenvector ê1 into 3D. Typical results are shown

in Figure 3.49. The experiments are repeated for 18, 30 and 42 dimensions with several values of f

resulting in angular errors (standard deviation) shown in Figure 3.50.

The angular errors climb as the dimensionality rises, but can be counteracted by increasing the

number of iterations f in the Monte Carlo simulation. The reason for this is the reducing probability

of randomly choosing a vector that will point to a small region in N dimensional space as N increases.

Running Monte Carlo simulations with large f and large N is difficult as computation time and

storage requirements increase both with f and N . A simplified solution is to make use of a single

vote aligned to the connecting line between the voter and votee. The simplified solution is equivalent

to an aligned stick vote or a ball vote with α → ∞. Although this is not the case, the simplification

can be warranted to greatly simplify the calculations needed in higher dimensional space. A similar

approach is used by Jia [27], who uses high dimensional stick voting to infer sections of images that

are missing.
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Figure 3.50: Monte Carlo angular error for a single voter—votee pair.
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(a) Ball vote. (b) Simplified stick vote.

Figure 3.51: Twenty Monte Carlo estimations of the first eigenvectors ê1 orientation using 32 voters
on the ideal tissue earth sequence (N = 42, f = 10000).

The effect of the ball vote and the simplified stick vote is applied to case 7 (N = 42) on the ideal

tissue earth sequence in Figure 3.51. The simplified stick vote is well aligned to the voters in the

ideal case. When a natural sequence such as the flower garden sequence is used, the stick vote

gives a similar estimate of the motion vector as the ball vote. Simulations are conducted using both

techniques on natural sequences in the experiments and measurements chapter.

3.12 Summary

This chapter developed the application of the skew tangential voting kernel applied to motion seg-

mentation. The concept of skewness was introduced and expanded on. The concept of skewness is

associated to occlusion and disocclusion using matched filters to detect motion boundaries proposed

and used on a synthetic image sequence.

When non-ideal conditions are presented, such as with an interpolated synthetic image sequence,

the skewness measure is adversely affected. Numerous methods were explored to try reinstate the

skewness measure.

• Voter pre-alignment. A two-tier voting approach to refine the ball vote into an aligned vote.

• Variation of kRGB . The effect of varying kRGB was investigated.

• Skewness only over spatial dimension. The effect of only working the skewness measure out

over the spatial dimensions.
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(a) Ball vote. (b) Simplified stick vote.

Figure 3.52: Twenty Monte Carlo estimations of the first eigenvectors ê1 orientation using 32 voters
on the flower garden sequence (N = 42, f = 10000).

None of these measures caused the skewness measure to visually improve.

A further problem with the increasing dimensions on Monte Carlo analysis was identified. As the

dimensionality increases, the number of iterations needed for valid Monte Carlo results also rises. A

simplified stick vote solution that is applied to one of the natural sequences is proposed later.



Chapter 4

Practical processing of the tensor
voting framework

Even though the approach has been to ignore computational load, realistic results only occur after

realistic simulations. Some of the results in the thesis require computational resources beyond that

of a PC to complete within a reasonable time frame. Recent developments in the Graphic Processor

field and the associated computational frameworks allow a reasonably priced solution to this vastly

parallel formulation. Some insights are included.

112
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4.1 Introduction

In the previous chapter, the theory of skew tangential tensor voting was proposed and analysed.

A novel skewness measure was introduced as a method to determine motion boundaries based on

occlusion or disocclusion.

In order to run Monte Carlo simulations using these techniques on image sequences it is necessary

to implement the algorithm on a suitable architecture. Due to the highly parallel and independent

nature of tensor voting and work done by Min [44], a Graphic Processor Unit (GPU) architecture

is used.

In this chapter the implementation of the skew tangential tensor voting framework on such an

architecture is described and discussed. The difficulties encountered and results achieved are also

given.

4.1.1 Graphic Processor Units (GPUs)

The tensor voting problem presents a computational challenge especially when the number of di-

mensions rises. When the dimensionality is small (N < 4), then it is possible to use lookup tables.

This is not feasible for the high dimensions used in the methods described in the thesis as the dimen-

sionality usually exceeds N = 5. In order to accumulate votes cast by voter tensors at votee sites,

Monte Carlo runs need to be done, resulting in a massively parallel as well as a massively sequential

computational need.

GPUs have been fueled by the computer gaming industry to achieve massive parallel processing

capability for rendering 3D graphics on screen. Tools have also become available for the GPU to

allow results to be extracted from the GPU instead of rendering to the screen. Min has demonstrated

the use of GPUs for Tensor Voting in [44] using a Nvidia GeForce 7800GTX. Min made use of leading

technology at that stage, but the dimensionality was still limited to N = 5.

Subsequent advances in the graphic card environment have allowed the number of parallel processors

to increase, and still be affordable. In this formulation, a Nvidia 260GTX was used which has an

increased memory bandwidth from 55GByte/s to 100GByte/s as well as a processing increase from

175GFlop/s to 900GFlop/s. The number of transistors has also risen from 302 million transistors

to 1.4 billion transistors on the die. This has occurred in the space of 3 years. For the tensor

implementation, the new 260GTX supports double precision floating point natively and is one of

the first GPU processors to do so.
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The programming tools have also made large advances. The tools now use a well integrated environ-

ment called Compute Unified Device Architecture (CUDA) [51]. CUDA uses a C based environment

allowing easy integration of existing algorithmic code with a few extensions to allow parallel compu-

tation in the framework. It also integrates easily in well known Integrated Development Interfaces

(IDE) such as Microsoft r© Visual C++. Compile times are short, but debug facilities are still

problematic.
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Table 4.1: GTX 260 capabilities.

Parameter Value

Multiprocessors 24
Global Memory 896 MByte

Memory bus width 448 bit
Transistors 1.3 Billion
Core Speed 576 MHz

Memory Speed 1998 MHz
Available Threads 512
Shared Memory 16254 Bytes

Constant Memory 64544 Bytes

4.2 High dimensional tensor voting implementation

The approach taken to allow development on the GPU is a tiered approach:

• The algorithm is tested and developed in MATLAB without any optimisations, and is func-

tionally correct. MATLAB is used to provide a convenient means to create data input and

display data output, and remains in the software for this purpose in the GPU implementation.

• The core algorithm is written in C and introduced to MATLAB as a MEX file. Parameters

are passed in and out of the C code, as well as using file interfaces for the input data which is

difficult for MATLAB to manage.

• The C algorithm has predefined switches to call into CUDA, which uses the GPU to do the

highly parallel and computationally intensive parts of the algorithm. Data preparation still

occurs in the C environment as this is not easily scalable into the GPU architecture.

4.2.1 The GPU environment

The GPU used for this experimentation is the GTX260 which has the specifications [51] given

in Table 4.1. The GPU is arranged to run parallel threads making use of its multiprocessors.

The multiprocessors have a Single Instruction Multiple Thread (SIMT) architecture where a single

processor can run several sets of threads with their own context through one instruction. The GPU

is able handle divergent code in the threads by stopping instructions to the other threads until the

threads instructions converge again. The number of stalled threads is related to the warp size of the

processor, which is fixed at 32.

The thread arrangement is shown in Figure 4.1(a). The GPU is able to make 3D blocks of threads
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that all execute concurrently as long as the number of threads does not exceed 512. Each thread

needs local variables and registers which are taken out of shared memory. Thread blocks can also

see shared memory in a communal way, where each one sees the same content. Problems arise when

thread safe writing to this memory must occur as CUDA only has a couple of atomic instructions —

none of which operate on double precision numbers. The shared memory, as seen in Figure 4.1(b), is

a scarce resource limited to 16KByte. In optimising performance, due consideration of the memory

constraint must be taken versus the thread count. The GPU also has very efficient synchronisation

to allow all the threads to get back into step.

Over and above threads, thread blocks can be arranged in a 2D grid. The GPU schedules these

thread blocks to execute as soon as there are open slots on the multiprocessors. There is no guarantee

of the order of execution unless the host computer passes the GPU thread blocks and then waits

for completion before passing the next block. The shared memory does not persist between thread

blocks — it is only valid for the lifetime of a thread block.

The memory arrangement in the GPU is shown in Figure 4.1(b). Each thread has several local

variables that use registers that reside in shared memory and have high speed access of about 4

clock cycles. When there are too many local variables, local memory is used which has a latency of

400–600 clock cycles as it is held in uncached global memory. To avoid this situation it is necessary to

preallocate shared memory for arrays, as the compiler automatically places arrays in local memory.

Shared memory is high speed memory on a single multiprocessor and can be used to allow several

threads to read common variables or to allocate sections based on the identity of the thread in

separate areas in shared memory.

Constant cache memory is a limited section of global memory where high speed read-only access

can occur. Unlike shared memory, constant memory is persistent between thread blocks. Constant

memory values can only be changed by the host and not the GPU.

Global memory is fairly large, but still small when looked at from the video processing perspective.

Global memory has large latencies of 400–600 clock cycles in access. In order to counteract this, the

GPU has several forms of memory access coalescing methods when threads access adjacent portions

of memory simultaneously. The GPU compiler also allows instructions to be executed that do not

rely on the outcome of the memory access before stalling the processor.

4.2.2 Crafting the algorithm for the GPU

The algorithm needs to be carefully coded into the GPU architecture to maximally use its resources.

The algorithm code was based on TVLib Version 1.0, written by Tang at University of Southern
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(a) Parallel threads and blocks. (b) Tiered memory architecture.

Figure 4.1: Nvidia GTX260 architecture.
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California. This code was extensively changed to cater for the new aspects of the algorithms proposed

as well as the GPU architecture.

The algorithmic structure is outlined in Algorithm 1 to Algorithm 10. It is initiated in MATLAB

in Algorithm 1, and moves into PC C code in Algorithm 2. Once the voting process is complete, the

second order tensors at the votee sites are returned together with the skewness measure. MATLAB

is used to display and manipulate the results into presentable formats.

Require: image stack ∧ votee positions ∧ σ ∧ case
Ensure: output tuple∧ graphics

Create voteeTuple file
Invoke TensorVote MEX file
Read outputTuple file
Display orientation
Display skewness

Algorithm 1: MATLAB Front End

In Algorithm 2, the tensor voting process is entered. All the simulations are run with 32 voters and

f = 10000. In this algorithm, the specified votee sites are segmented into sets of voteen voters based

on the availability of GPU global memory. The largest component of memory is used by the storage

area for all the ball vote first order tensors. These results are used both for the second and third

order tensors and as such are not accumulated yet, with all iterations for all voters for all votees

in the set stored. The closest 32 voters are calculated on the PC using getVoters, and are then

transferred into GPU memory for FillTensorsGPU to operate on. When the GPU is finished,

the results of the second order tensor votes at the votee sites as well as the skewness measures are

transferred back into PC memory. The process is repeated until all the voting at the votee sites are

completed.

Algorithm 3 determines the closest 32 voters to a specified votee site using an Euclidean metric. The

matching cone volume constraints are also used to prevent voters on the same x, y plane from being

chosen. The cone slope is normally chosen at 5 pixels/frame, which is adequate for the simulations

and experiments being done.

The entry point in the GPU is FillTensorsGPU in Algorithm 4. Here the various parallel GPU

algorithm kernels are launched with the required parameters. Each algorithm has its 3D threads

defined by a threadDim call with the x, y, z dimensions specified. The grid blocks are similarly

called using gridDim with the grid x, y dimensions specified. After each kernel launch, a GPU

synchronise is executed to make sure all the results are completed and stored.

The GenTensorVote in Algorithm 5 uses the Ziggurat [40] random number generator with a seed

derived from the thread number and the current timer value. This is used to generate random N
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Require: voteeTuple file ∧ σ ∧ case
Ensure: outputTuple file

voteeTuples ⇐ voteefile
majorvoteen ⇐ sizeof(voteeTuples)
voteen ⇐ 0
votern ⇐ 32
count ⇐ 10000
N ⇐ dimension(voteeTuple)
while tensorTemp will fit in GPU global memory and voteen ≤ majorvoteen do

increase voteen
tensorTempGPU ⇐ GPUmalloc(voteen× votern×N × count) {Used to hold 1st order tensors}
voteeTupleGPU ⇐ GPUmalloc(voteen × sizeof(Tuple))
outputTupleGPU ⇐ GPUmalloc(voteen × sizeof(Tuple))
voterTupleGPU ⇐ GPUmalloc(voteen × votern × sizeof(Tuple))
for voteenumber = 0 to majorvoteen step voteen do

voteeTupleGPU ⇐ portion(voteeTuple)
for i = 0 to voteen do

voterTuple ⇐ getVoters {Only for the relevant votees}
voterTupleGPU ⇐ voterTuple
FillTensorsGPU

outputTuple ⇐ outputTupleGPU {Only for the relevant votees}
outputTuplefile ⇐ outputTuple

Algorithm 2: TensorVote

Require: voteeTuple ∧ image stack ∧ σ ∧ case
Ensure: voterTuple

voterList ⇐ []
for all Ii,j,k such that Ii,j,k ∈ matchingconevolume do

tuple ⇐ getTuple(Ii,j,k, case) {Convert imagestack point to tuple}
if ‖tuple − voteeTuple‖ < max(voterList.distance) then

voterList[voterList.index] ⇐ tuple
voterTuple ⇐ voterList

Algorithm 3: GetVoters
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Require: voteeTupleGPU ∧ σ ∧ voterTupleGPU
Ensure: outputTupleGPU

voteesPerThread ⇐ 4 {Fills the Multiprocessor}
threadDim ⇐ (votern, voteesPerThread, 1)
gridDim ⇐ (voteen/voteesPerThread, 1)
genTensorVote {Launch the threads and blocks}
threadSynch {Wait for them all to finish}
threadDim ⇐ (min(N, 20),min(N, 20), 1)
gridDim ⇐ (N/20 + 1, N/20 + 1)
for i = 0 to voteen do

collate2orderTensors {Launch the threads and blocks}
threadSynch {Wait for them all to finish}
threadDim ⇐ (1, 1, 1)
gridDim ⇐ (voteen, 1)
Eigen {Launch the threads and blocks}
threadSynch {Wait for them all to finish}
maxThreads ⇐ maxthreads {memory constrained}
threadDim ⇐ (maxThreads, 1, 1)
gridDim ⇐ (count/maxThreads, voteen)
FindSkewness {Launch the threads and blocks}
threadSynch {Wait for them all to finish}
threadDim ⇐ (1, 1, 1)
gridDim ⇐ (voteen, 1)
CollateSkewness {Launch the threads and blocks}
threadSynch {Wait for them all to finish}

Algorithm 4: FillTensorsGPU
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vectors on the unit N dimensional sphere. These are passed into the GenStickVote routine for

tangential skew voting. The results are stored in the large area without accumulating the first order

tensors. By doing this, the global memory latency is counteracted as no further calculations in this

set of code rely on the result being stored – thus avoiding GPU multiprocessor stalls.

Require: voteeLocation ∧ voterLocation ∧ σ
Ensure: tensorTemp

for iterations = 0 to f do
voterDir ⇐ randn()
voterDir ⇐ norm(voterDir)
tensorTemp + + ⇐ GenStickVote {Stores ND vectors sequentially}

Algorithm 5: GenTensorVote

The GenStickVote in Algorithm 6 implements Equation 3.4.2 with the direction given by Equa-

tion 3.5.1 to give the skew kernel depicted in Figure 3.12(c). In the GPU implementation, no early

exits are allowed, and due to the possibility of denominators close to zero, checks need to be done

as to whether a result is a real number or not. This routine is the inner computation of the tensor

voting framework and contributes substantially to the computational load.

Require: Q = voteeLocation ∧ P = voterLocation ∧ σ ∧ v̂ = voterDir ∧ alphaFactor
Ensure: vote

d = Q − P
l = |d|
cos(α) = d̂ • v̂
r = l

2|sin(α)|

b = l
2|cos(α)|

N̂P = v̂ |sin(α)|
C = P + (bN̂P )
û = (Q − C)
θ = (π − arccos(|sin(α)|)
s = rθ
Vstick = exp(− s2+alphaFactor∗θ2/4

σ2 )
vote = Vstickû

Algorithm 6: GenStickVote

Once the unaccumulated first-order tensors are all in GPU global memory, the second-order tensor

collation takes place where the outer product of the first-order tensor with itself T = a ⊗ a results

in a positive semidefinite second-order tensor. The second-order tensors are accumulated A =
∑

T over all voters and iterations to give a resultant second-order tensor A on which the eigen

decomposition can take place for second-order feature extraction. This accumulation takes place in

Collate2orderTensors in Algorithm 7.

A normal eigenanalysis is done on the second-order tensor A to determine both the eigenvectors êi
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Require: tensorTemp
Ensure: eigenV ectori,j

eigenV ectori,j ⇐ 0
for i = 0 to f ∗ votern do

t = tensorTemp[i]
eigenV ectori,j ⇐ eigenV ectori,j + ti ∗ tj

Algorithm 7: Collate2orderTensors

and the eigenvalues λi of the second-order tensor. This is done in Eigen in Algorithm 8.

Require: eigenVector
Ensure: eigenV ector ∧ eigenV alue

eigenV ector, eigenV alue ⇐ eig(eigenV ector)

Algorithm 8: Eigen

The same set of first order tensors are used to find the accumulated third-order tensor Tijk = aiajak

in Algorithm 9 . Due to space restrictions, the local storage of a N ×N ×N third-order tensor is not

desirable as memory is a scarce resource on the GPU. A simplification is made as the direction of

the skewness has already been calculated and is the first eigenvector of the second-order tensor ê1.

It is also known that the third-order tensor Tijk is positive semidefinite which allows Equation 1.5.5

to be reduced to

Se1
= 6

N
∑

i=1

N
∑

j=i

N
∑

k=j

aiajake1i
e1j

e1k
. (4.2.1)

This simplification opens the implementation to the concept of skewness which would otherwise be

difficult to implement, and would be computationally exhausting. The resulting skewness scalar is

stored for each first-order tensor.

Require: tensorTemp ∧ eigenVector
Ensure: tensorTemp

v ⇐ eigenV ector0

skewness ⇐ 0
for count = 0 to f ∗ votern do

t = tensorTemp[count]
for i = 0 to N do

for j = i to N do
for k = j to N do

skewness ⇐ skewness + (ti ∗ tj ∗ tk ∗ vi ∗ vj ∗ vk)
tensorTemp0 ⇐ skewness

Algorithm 9: FindSkewness

Finally CollateSkewness in Algorithm 10 accumulates all the skewness measure scalars Se1 for

a particular votee.
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Require: tensorTemp
Ensure: skewness

skewness ⇐ 0
for count = 0 to f ∗ votern do

t = tensorTemp[count]
skewness ⇐ skewness + t0

Algorithm 10: CollateSkewness

4.2.3 Implementation results

The GPU architecture described has a single objective – to speed computation up in the high

dimensional voting process. The voting algorithm code is compiled on both the PC CPU and the

GPU for validation and performance evaluation. The two distinct time-consuming parts of the

algorithm are the GetVoters part and the FillTensors part. The GetVoters part is not

suitable for GPU implementation as there is a lot of decision logic surrounding the matching cone

volume along with high memory requirements to store the whole spatio-temporal volume. This is

kept on the PC CPU, and only the relevant voter tuples are passed into the GPU. In Figure 4.2, the

voter selection is common to both the PC CPU and GPU. The PC CPU on which the simulations

were run is a 3.0GHz Pentium 4 system with 3Gbytes of memory, while the GPU is the above-

mentioned Nvidia GTX260 Graphics card. Both the implementations run code compiled for speed

optimisation.

The performance in computation of the PC CPU and GPU is based on a 32 voter per votee problem

with f = 10000, σ = 10, α = 1, kRGB = 1, kt = 1 and kxy = 1. Figure 4.2 plots the the time

taken in seconds to complete the computation of one votee versus the dimensionality of the problem.

The time taken to select voters in the PC CPU is superseded by the computation time at fairly low

dimensionality, validating the idea of leaving the voter selection as a PC CPU-based activity. If the

search area for the closest voters is opened up by increasing σ or decreasing the other parameters

kt, kRGB , kxy, then the voter selection time will increase as this process is done serially on the PC

CPU.

The GPU code for the high dimensions is memory constrained, so the full number of multiprocessors

are not used. Even so there is an improvement in runtime speed of the GPU compared to the PC

CPU. This improvement ranges from five fold to seven fold at at higher dimensionality even though

the clock speed of the GPU is less than the PC CPU. The computation speed could be improved

more with the newer generation GPU cards that feature more on-board memory, as well as several

GPUs on a card. The tensor problem is a largely uncorrelated parallel problem, and the GPU

solutions will continuously increase the computing capability available at a reasonable cost.
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Figure 4.2: Processing performance comparison as a function of dimensionality between a PC CPU
and GPU implementation of the same code.

The final GPU implementation has tried to glean the most out of the GPU capability by implement-

ing the following points.

• Minimal PC-GPU memory transfers. Only the required input data and results are transferred

between the PC and the GPU card as these transactions are expensive. In the tensor voting

framework, only the applicable votees and voters are transferred as the voter selection occurs

on the PC CPU and only the final results at the votee sites are returned to the PC.

• Completely independent threads. The threads may read common data but compute on inde-

pendent transitional data and store results into independent memory locations.

• Local thread data held in shared memory. Due to the high latency of reading global memory,

the input data required by the thread is read into shared memory only accessible by the thread.

• Reuse of shared memory. The scarce shared memory cannot be assigned and is not fully

utilised. By reusing the memory the readability of the implementation suffers, but the number

of threads can be maximised.
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• Maximising the number of threads. Based on the required memory per thread, the maximum

number of threads are launched. In the tensor voting framework, the threads are segmented

based on a single votee-voter relationship. Thirty two threads cater for all the voters per

votee. The set of 32 can be duplicated by doing several votees concurrently. The memory

usage per thread is heavily reliant on the dimensionality of the problem and is the thread

limiting factor. The achieved figures are shown in Figure 4.3. At the low dimensionalities the

number of threads is limited by the GPU device maximum number of threads. As N > 20 the

number of threads starts to collapse due to global and shared memory constraints.

• Lengthy global memory write sequences. The tensor voting Algorithm 5 writes the first-

order tensor results into large sections of global memory dimensioned according to f , where

f = 10000. Care is taken that the memory is non-overlapping between threads and that the

algorithm only writes to the memory.

• Optimal use of registers. The CUDA environment is tuned to use registers (taken from shared

memory) using compile directives instead of local memory which is slow. All the array memory

needed for the thread is assigned at thread launch level. The CUDA environment does not

seem to compile arrays at lower call levels into shared memory.

• Buffered global memory reads. When large sections of the global memory need to be read,

a shared memory buffer is assigned that can take several data points at a time to minimise

GPU memory stalling. Buffered reading takes place when the first-order tensors are collated

in Algorithm 7 and Algorithm 9.

The PC CPU implementation uses the same code base as the GPU code except that all actions

are serialised. The PC CPU code has a memory allocation limitation governed by the MATLAB

MEX interface in use with the PC CPU code. As soon as the required memory on the PC CPU

application side exceeds the amount requested by MATLAB from the operating system, the PC

CPU applications exits to MATLAB with a memory allocation error. With the small runs done

during the thesis this limitation did not pose a large problem.
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Figure 4.3: Maximum number of threads launched on GPU as a function of dimensionality.
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4.3 Implementation Challenges

While implementing the high-dimensional tensor voting on the GPU, several implementation chal-

lenges arise. These challenges are usually very difficult to solve due to the unforgiving nature of the

GPU, and inability to debug properly in the GPU environment. There are also several problems in

the compiler which can be expected in the infancy of any compiler. Implementation problems were

very seldom highlighted by the PC emulation of the GPU due to:

• The inability of the PC to deal efficiently with more than 20 threads at a time. In the GPU

environment, the number of parallel threads reaches to 512.

• The subtle interaction between threads on memory conflicts and synchronisation.

• The emulation uses the PC C compiler – and as such the GPU compiler issues are not present.

• The emulation is not as resource constrained as the GPU card is, and does not exhibit memory

depletion problems.

This led to black box testing where the GPU code is evaluated on outputs. The GPU outputs are

compared to PC generated outputs for small simulation runs. Implementation problems were then

found by isolating segments of code until the outputs from the GPU and PC compare correctly.

Debugging in this fashion is an extremely time consuming process as the simulation runs need to be

large enough to capture problems that do not occur often.

The implementation revealed several problems in the CUDA environment:

• Compound statements. Compound statements, especially with pre- and post-decrement or

increment can cause errors if the variable affected is used in the next statement.

• Conditionals. Conditionals are generally not used in CUDA as this stalls the threads until all

threads reach the same execution point. Errors were traced to conditionals inside the innermost

loops. The code was restructured to rather complete without early exits.

• Non-finite numbers. In the case of non-finite numbers, CUDA propagates their presence. In

tensor voting this is disastrous as the final answer will ends as non-finite as is typically the

case when accumulating Monte Carlo results.

• Incorrect type conversion. In the case of converting from an integer to a double precision

number, the GPU makes use of non-standard rounding. In some cases the only workaround is

to make all the number double precision from the start.
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• Shared memory conflicts. It seems that when the number of threads is small, the multiprocessor

launches other blocks before a thread block is complete, allowing contamination of shared

memory. This problem manifests as a locked computer.

• Inadequate critical sections. CUDA provides a few atomic instructions that allow a thread to

complete a memory transaction before another thread can access the memory being changed.

Unfortunately there are not any that support double precision floating point which is manda-

tory in the tensor voting framework to maintain Monte Carlo accuracy.

The GPU hardware also exhibits a major problem in the Windows operating system environment.

When computation on the GPU exceeds 10 seconds without returning to the host program, the

Windows operating system deems the display driver non-functional. Under these conditions the

Windows operating system terminates non-functional drivers which leads to an operating system

reset, or a general display hang-up. The only recovery is through a hard reset on the computer.

As has been described, development in the GPU field is still fairly hostile, but as evidenced by the

advent of boxes containing GPUs for computational purposes only (Nvidia Tesla architecture), they

will become more workable in the future.



Chapter 5

Experiments and measurements

This chapter looks into practical results of the proposed technique, and attempts to quantify the

results. Use is made of known image sequences to be able to compare the results with ground truth.

Although the main effort is not motion estimation, use is made of the Yosemite motion estimation

problem as the ground truth is known. The full algorithm is applied to the Mobile Calender sequence

and the Flower Garden sequence to determine its potential. The results on the natural sequences

are discussed.

129
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5.1 Introduction

In the previous chapter the GPU implementation of the skew tangential voting framework in higher

dimensions was addressed. The GPU implementation of the voting framework gave a speed im-

provement of up to seven times compared to using a normal PC CPU.

In this chapter the skew tangential voting framework is applied to the Yosemite sequence to deter-

mine the performance of the algorithm on estimating the motion vectors. The results are compared

to other authors results and are discussed.

The skew tangential voting framework is then applied to the Mobile Calender sequence. The left

hand and right hand movement detectors are used to determine the motion boundaries and this is

compared with ground truth.

The voting framework is applied to the Flower Garden sequence with some analysis on the choice

of parameters. The simplified stick vote method is also applied to the Flower Garden sequence and

the results commented on.

5.2 Motion vector estimation for the Yosemite sequence

Although the techniques being developed are for motion segmentation, motion vector estimation

occurs automatically as the projection of the second-order tensor first eigenvector ê1 on the x, y

plane. The Yosemite sequence is a useful synthetically generated test sequence used by many

researchers to measure the performance of motion vector estimation algorithms. The sequence is 30

frames long, and the central frame is analysed allowing all the preceding and following frames to be

used. Most researchers ignore the sky as the clouds exhibit non-rigid motion, and for purposes of

comparison the sky is ignored in these results as well.

The tensor encoding uses case 8 encoding resulting in N = 28. The sequence is a gray scale image,

so no colour information is encoded in the tensors. The tensor vote is a single pass ball vote using

a GPU with 32 voters per votee, σ = 10, α = 1, kRGB = 1, kt = 1, kxy = 1 and f = 10000.

The run time for the frame was 24hrs on the GPU. The results obtained are 12.1◦ ± 17.3◦ for a

100% image coverage. The results in Figure 5.1 are not as good as Nicolescu and Medioni [49] for

100% coverage but it must be remembered that the vote was a single pass ball vote, and no saliency

censorship and densification took place — all the results are from actual data. It can also be seen in

Figure 5.1(b) that the errors seem to cluster. Looking at Figure 5.1(c) the error map can be seen.

More prominant red areas indicate high errors showing that high errors occur in the darker area due

to a high likelihood of aliasing. The high errors could be counteracted by increasing the number of
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(a) Decimated motion vector field. (b) Detail of motion vector field.

(c) Detail of motion motion vector error field.

Figure 5.1: Yosemite sequence where green represents the ground truth, red represents the tensor
voting result and the numbering indicates the angular error in degrees between ground truth and
the tensor voting result. The error is shown with high red value indicating a large angular error.

adjacent pixels in the tensor encoding at the cost of crisply detecting motion edges. In the Yosemite

sequence the predominant flow is smooth without many edges and is not always representative of

normal natural images such as the Mobile Calender or Flower Garden sequences.
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Table 5.1: Yosemite motion vector results. The thesis result is in bold.

Technique Average error Standard deviation Density

Farnebäck [13] 1.14◦ 2.14◦ 100%
Nicolescu and Medioni 3.74◦ 4.3◦ 100%

Gaucher and Medioni [16] 8.83◦ 10.6◦ 100%
Guest(σ = 20,case 8) 12.1◦ 17.3◦ 100%

Anandan 15.54◦ 13.46◦ 100%
Uras et al. (unthresholded) 16.45◦ 21.02◦ 100%

Horn and Schunck 22.58◦ 19.73◦ 100%
Lucas and Kanade(λ2 ≥ 5.0) 3.55◦ 7.11◦ 8.8%

Uras et al. (det H ≥ 2.0) 3.75◦ 3.44◦ 6.1%
Fleet and Jepson ( τ = 2.5) 4.29◦ 11.24◦ 34.1%
Fleet and Jepson ( τ = 1.25) 4.95◦ 12.39◦ 30.6%
Lucas and Kanade(λ2 ≥ 1.0) 5.20◦ 9.45◦ 35.1%

Uras et al. (det H ≥ 1.0) 5.97◦ 11.74◦ 23.4%
Heeger 11.74◦ 19.0◦ 44.8%
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5.3 Motion boundary detection in the Mobile Calender se-
quence

The Mobile Calender sequence is a well known test sequence used in evaluating moving object

segmentation. This sequence also has a ground truth sequence against which to evaluate. The test

sequence consists of 40 interlaced RGB frames with ground truth on every tenth frame. Due to a

small time difference in the odd and even fields of the test sequence, the full image used in this

analysis uses only the even field, and interpolates the missing lines with a bicubic interpolation. Due

to the high complexity of the TS map extraction, only a small section of frame 20 of the sequence

is evaluated over the train section.

The TS map over the train is determined as outlined previously, with slightly different parameters.

Only Case 3 and case 6 are evaluated as the ideal tissue earth sequence indicated that these cases

present good motion vector estimation, as well as good skewness measure performance for detecting

moving edge boundaries in Section 3.10. The progressive results for case 3 are shown in Figure 5.2,

and the results for case 6 are shown in Figure 5.5.

For case 3, a lower scale factor σ = 10 is chosen as the occlusion and disocclusion distances are small

in places and an increase in the σ factor increases the influence of voters further away, corrupting

estimates across motion boundaries. The saliency is generally very high, and drops on the engine

body due to homogeneous colour. The motion vector orientations in Figure 5.2(b) display chaotic

behavior due to the homogeneous regions, but the TS map seems to display structure with the

underlying image in Figure 5.2(c).

When the left hand and right hand movement filters in Figure 5.3 are used with a filter width of η

= 2, the outputs of the filters in Figure 5.3(g) and Figure 5.3(c) still manage to show some moving

edge structure. It seems as if the detection points have found their way into the object, due to

the indistinct motion edges (smearing). It must be remembered that the algorithm has no edge

detection aspect — it only relies on motion.

Combining the left hand and right hand movement detections, the result is compared to the ground

truth image in Figure 5.4. As noted, the detections fall within the boundary of the object. It can

also be seen that the ground truth is an approximation of the actual boundaries, and would make a

poor evaluation tool for segmentation.

Case 6 is run with a higher scale factor σ = 20 as the dimensionality of the problem is higher,

and Euclidean distances in this higher dimension are commensurately greater. Case 6 saliency and

the TS map in Figure 5.5 show improvement when compared to case 3, although the homogeneity

problem is still present on the train. The TS map and motion vector orientations in Figure 5.5 do
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(a) First eigenvector saliency. (b) Detail of saliency map.

(c) TS map. (d) Detail of TS map.

Figure 5.2: Case 3 results with σ = 10, α = 10, kRGB = 0.5, kxy = 1, kt = 1 and f = 10000.
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(a) Left hand movement filter with η = 3 applied to
skewness measure in x direction.

(b) Detail of left hand movement filter result.

(c) Detection at 50% of left hand movement filter. (d) Detail of left hand movement filter detection.

(e) Right hand movement filter with η = 3 applied
to skewness measure in x direction.

(f) Detail of right hand movement filter result.

(g) Detection at 50% of right hand movement filter. (h) Detail of right hand movement filter detection.

Figure 5.3: Case 3 TS Map passed through a left hand and right hand movement filter with detections
shown.
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(a) Combination of left hand and right hand move-
ment detections.

(b) Detail of combination of left hand and right hand
movement detections.

(c) Left hand and right hand movement detections
superimposed on ground truth.

(d) Detail of left hand and right hand movement de-
tections superimposed on ground truth.

Figure 5.4: Case 3 full detection results. Both occluding and disoccluding detections are shown and
compared to ground truth.
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(a) First eigenvector saliency. (b) Detail of saliency map.

(c) TS map. (d) Detail of TS map.

Figure 5.5: Case 6 results with σ = 20, α = 10, kRGB = 0.5, kxy = 1, kt = 1 and f = 10000.

look more consistent than in case 3.

The detection of occluding and disoccluding boundaries in case 6 are shown in Figure 5.6. The

edge points are still within the boundaries of the object, but seem more consistent with motion

boundaries.

The occluding and disoccluding boundaries are compared with ground truth in Figure 5.7, and show

improvement over case 3. It also seems that some of the oblique boundaries are found as well. The

detail section only picks out a small portion of the region of interest. Toward the cab of the train,

the method has managed to pick out small openings that allow the background to be visible. This

is not noted in the ground truth, but are valid moving object edges.
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(a) Left hand movement filter with η = 3 applied to
skewness measure in x direction.

(b) Detail of left hand movement filter result.

(c) Detection at 50% of left hand movement filter. (d) Detail of left hand movement filter detection.

(e) Right hand movement filter with η = 3 applied
to skewness measure in x direction.

(f) Detail of right hand movement filter result.

(g) Detection at 50% of right hand movement filter. (h) Detail of right hand movement filter detection.

Figure 5.6: Case 6 TS Map passed through a left hand and right hand movement filter with detections
shown.
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(a) Combination of left hand and right hand move-
ment detections.

(b) Detail of combination of left hand and right hand
movement detections.

(c) Left hand and right hand movement detections
superimposed on ground truth.

(d) Detail of left hand and right hand movement de-
tections superimposed on ground truth.

Figure 5.7: Case 6 full detection results. Both occluding and disoccluding detections are shown and
compared to ground truth.
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(a) Frame 1. (b) Frame 30.

Figure 5.8: Flower Garden sequence showing the tree region tracked to give vx = −9.8 pixels/frame
and vy = −0.6 pixels/frame.

5.4 Motion boundary detection in the Flower Garden se-
quence

The Flower Garden sequence is a well known test sequence used in evaluating moving object seg-

mentation. A portion containing the tree trunk is used as this will display horizontal occlusion and

disocclusion. The sequence is 40 frames long, and no ground truth is available. Even though ground

truth is not available, the edges of the tree trunk are well defined. The tree trunk is slightly out of

focus which makes the interpolation problem greater. In order to try quantify the parameters used,

a portion of the tree trunk is manually tracked over 30 frames to determine the tree trunk motion

vector and is shown in Figure 5.8. The flowers are also manually tracked in Figure 5.12.

5.4.1 Ball vote boundary detection in the Flower Garden sequence

Normal ball voting with case 6 tensor encoding is applied to a small section of votees within the

tree trunk and the motion vector angles compared to the reference values of vx = −9.8 pixels/frame

and vy = −0.6 pixels/frame as shown in Figure 5.9. Ball voting is conducted for various parameter

values and the mean and standard deviation error values (using the same calculation as was used in

the Yosemite results) are shown in Figure 5.10. The kxy parameter is set at kxy = 1 as the other

parameters are believed to be relative to each other. The angular errors have local minima for all

the σ values, and tend to occur at low kRGB for low σ and as σ increases — the minimum moves

to higher kRGB as expected due to the coupling of the global parameter σ to the other parameters

kt and kRGB . The local minima seen may be global minima as higher values of the parameters do

not work well at all. From Figure 5.10, the best mean (10◦) and standard deviation (7◦) occurs
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57 22 34 17 2 14 42 73 11 31 60 17 38 47

54 39 15 61 57 54 67 45 20 12 36 9 11 30

2 76 90 23 34 20 43 87 66 26 10 41 21 4

Figure 5.9: Flower Garden sequence detail of trunk showing the ground truth (green) and the case
6 ball vote results (red). Each votee site also has the angular error in degrees.

at σ = 10, kRGB = 1.5 and kt = 1. It must be remembered that the parameters have only been

tested on a small portion of the trunk of the tree — and should be tested more comprehensively to

confirm this choice. Due to the high computational load to do tests, the values obtained are deemed

representative enough.

The same test of varying the parameters is run again using pre-alignment of 10 of the voters per

votee to see if there is any noticeable improvement on the motion vector angular error in Figure 5.11.

For the most part the results look similar comparing Figure 5.11 to Figure 5.10. The best mean

(7◦) and standard deviation (3◦) occurs when the parameters are set at σ = 10, kRGB = 1.5 and

kt = 1.5. This result is better than the ball vote, but comes at a large computational cost. The time

used to compute the graphs for pre-alignment is 5 hours compared to 15 minutes for the ball votes.

The computation only occurs on a small segment of the image frame. To use pre-alignment for a

large portion of the frame yields a run time of several days and is not feasible within the constraints

of the thesis.

The ball voting is repeated on a segment of the flowers in the garden as shown in Figure 5.12.

The manually determined velocities of the flower region are vx = −2.5 pixels/frame and vy = −0.2

pixels/frame. Ball voting is conducted in the same fashion as is done for the tree region and are

shown in Figure 5.10.

In an effort to balance the parameters between the two moving objects, a compromised parameter

selection of σ = 20, kRGB = 1.5 and kt = 1.5 is chosen and a ball vote is applied to a portion of the

Flower Garden sequence in a similar fashion was done with the Mobile Calender sequence in the



142

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

k
RGB

m
ea

n 
an

gu
la

r 
er

ro
r 

de
gr

ee
s

 

 
k

t
 = 0.5

k
t
 = 1.0

k
t
 = 1.5

(a) σ = 10

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

k
RGB

m
ea

n 
an

gu
la

r 
er

ro
r 

de
gr

ee
s

 

 
k

t
 = 0.5

k
t
 = 1.0

k
t
 = 1.5

(b) σ = 20
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(c) σ = 30
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(d) σ = 40

Figure 5.10: Error bars on the average angular errors on the Flower Garden sequence tree trunk
(case 6, ball voting) for various kt, kRGB and σ. The parameter kxy = 1.
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(b) σ = 20
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(c) σ = 30
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(d) σ = 40

Figure 5.11: Error bars on the average angular errors on the Flower Garden sequence tree trunk
(case 6, pre-alignment voting) for various kt, kRGB and σ. The parameter kxy = 1.
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(a) Frame 1. (b) Frame 30.

Figure 5.12: Flower Garden sequence showing the flower region tracked to give vx = −2.5 pix-
els/frame and vy = −0.2 pixels/frame.

previous section.

Even with the careful selection of parameters, the left and right hand movement detections shown

in Figure 5.15 are poor. There are several reasons for the poor performance.

• Lack of detail in tree trunk. Close investigation of the tree trunk shows large homogeneous and

aliased regions causing poor voter selection, especially with limited spatial matching given by

case 6 encoding.

• Rapid movement. The tree trunk moves rapidly across the scene affecting the choice of pa-

rameters to cater for large movement between frames. By allowing for the rapid movement

the parameters allow voter selection in aliased areas more easily.

• Aliasing in the flowers. The flowers are repetitions of themselves allowing poor voter selection

based on aliasing.

The main counteraction of the reasons resulting in poor performance is to increase the number of

pixels encoded in the tensor, which is done in the following section.

5.4.2 Simplified stick vote boundary detection in the Flower Garden se-
quence

The simplified stick vote is applied to a portion of the Flower Garden sequence to see if the method

yields better results in finding boundaries. The simplified stick vote allows higher dimensionality
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Figure 5.13: Flower Garden sequence detail of flowers showing the ground truth (green) and the
case 6 ball vote results (red). Each votee site also has the angular error in degrees.

voting to be used, allowing more pixels to be incorporated in the tensor voting framework to coun-

teract some of the aliasing and homogeneity issues in the Flower Garden sequence encountered with

normal ball voting.

The parameter kxy is made small to make the rapid tree trunk movement less important in deter-

mining voter selection, and the colour parameter kRGB is made larger to try separate colour better.

The simplified stick vote is a simple procedure where each voter votes once along the connecting line

between the voter and votee. The strength of the vote is determined by Euclidean distance. The

Monte Carlo run is greatly simplified as f = 1 so the dimensionality can be increased.

The simplified stick vote is first run on the case 8 tensor encoding in Figure 5.16 with a dimensionality

N = 30, and then on a case 10 tensor encoding in Figure 5.17 with a dimensionality of N = 72.

The simplified stick vote applied to the case 8 tensor encoding in Figure 5.16 is able to detect the

disoccluding boundary well but detects many false boundaries as well. The performance of the

occluding detector is partial with even more false boundaries detected. The false boundaries can be

cleaned up in a post processing step using line or surface tensor voting.

Increasing the dimensionality to case 10 tensor encoding in Figure 5.17 yields a clear disoccluding

boundary with few false boundaries, but the occluding detection does not pick up the occlusion edge

well at all. It is believed that more comprehensive tensor encodings incorporating more adjacent

pixels may improve this result.
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(a) σ = 10 (b) σ = 20

(c) σ = 30 (d) σ = 40

Figure 5.14: Error bars on the average angular errors on the Flower Garden sequence flower garden
(case 6, ball voting) for various kt, kRGB and σ. The parameter kxy = 1.
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(a) First eigenvector saliency. (b) Skewness measure.

(c) Left hand movement filter with η = 4 applied to
skewness measure in x direction.

(d) Right hand movement filter with η = 4 applied
to skewness measure in x direction.

(e) Detection at 50% of left hand movement filter. (f) Detection at 50% of right hand movement filter.

Figure 5.15: Case 6 ball vote applied to a section of the Flower Garden sequence. Parameters used
are f = 10000, σ = 10, α = 1, kt = 1, kRGB = 2 and kxy = 1.
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(a) First eigenvector saliency. (b) Skewness measure.

(c) Left hand movement filter with η = 4 applied to
skewness measure in x direction.

(d) Right hand movement filter with η = 4 applied
to skewness measure in x direction.

(e) Detection at 50% of left hand movement filter. (f) Detection at 50% of right hand movement filter.

(g) Detail of left hand movement detection. (h) Detail of right hand movement detection.

Figure 5.16: Case 8 simplified stick vote applied to a section of the Flower Garden sequence. Pa-
rameters used are σ = 10, α = 1, kt = 1, kRGB = 2 and kxy = 0.1.
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(a) First eigenvector saliency. (b) Skewness measure.

(c) Left hand movement filter with η = 4 applied to
skewness measure in x direction.

(d) Right hand movement filter with η = 4 applied
to skewness measure in x direction.

(e) Detection at 50% of left hand movement filter. (f) Detection at 50% of right hand movement filter.

(g) Detail of left hand movement detection. (h) Detail of right hand movement detection.

Figure 5.17: Case 10 simplified stick vote applied to a section of the Flower Garden sequence.
Parameters used are σ = 10, α = 1, kt = 1, kRGB = 1 and kxy = 0.1.
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5.5 Discussion on parameter choice

Even though the objective is to reduce the number of free parameters, there are several parameters

that need to be chosen for the skew tangential framework. Most can be chosen based on the

underlying motion characteristics of the sequence.

• σ parameter. The σ parameter is the overall scale parameter. The parameter determines

the ”reach” of the voter. Higher values leads to voters further away affecting the outcome of

the voting process at the votee. The high dimensionality of the tensors separates the tokens

more, and σ needs to be increased generally as the dimensionality increases. A general rule

empirically found is that an increase in dimension of 10 needs and increase in σ of 5. In highly

aliased sequences the value is reduced to allow closer voters to outweigh further voters. Normal

values are 10 ≤ σ ≤ 30.

• α parameter. The α parameter is the ”pointiness” parameter. This parameter only comes into

play when directed voting is being done — otherwise its affect is minimal. In the simulations

this parameter is usually α = 1 or α = 10.

• kt parameter. The time or z scale parameter allows the effect of tokens from image frames

further away to be accentuated or suppressed. Increasing kt will attenuate the effect of voters

from frames far away from the votee frame. This parameter is usually kt = 1.

• kRGB parameter. The colour scale parameter is useful in accentuating or suppressing the

RGB elements of the tensor. In homogeneous areas the effect of slightly different colours can

be accentuated by increasing kRGB while still keeping desired spatial scales. Normal values

are 1 ≤ kRGB ≤ 2.

• kxy parameter. The xy scale parameter is related to the maximum expected motion in a

sequence. In the Flower Garden sequence the trunk moves at almost 10 pixels/frame. To

counteract this the xy scale parameter is set to kxy = 0.1. In block matching motion estimation

methods there is no penalty on matching blocks with great xy offset — as long as the blocks

are within the search area. Similarly, kxy can make all the tokens in the matching cone volume

have little (but still finite) Euclidean distance penalties based on xy offset. Normal values are

0.1 ≤ kxy ≤ 1.

• η parameter. The left hand and right hand movement filter decay constant is matched to the

σ value chosen. Observation of results indicate that the occlusion and disocclusion detection

results are fairly robust with 2 ≤ η ≤ 4.
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5.6 Summary

In this chapter we have applied the skew tangential voting framework on portions of the Yosemite

sequence, the Mobile Calender sequence and the Flower Garden sequence.

In the Yosemite sequence the motion vector angular error is determined and compared to several

results in the literature. The performance of the algorithm is not very good in highly aliased areas

where the angular errors peak, but in other more smooth areas the angular errors are low.

In the Mobile Calender sequence and the Flower Garden sequence the ability of the left hand

and right hand movement detectors to detect the motion boundaries is variable from failure to

fairly good. The simplified stick vote shows good performance on the Flower Garden sequence in

detecting disocclusion but fails in detecting occlusion. This may be due to the aliasing problem with

the Flower Garden sequence as well as the very fast movement of the tree trunk always allowing

voters on either side of the votee and, in so doing, counteracting the skewness measure.

A more comprehensive method of optical flow evaluation is presented by Baker et al [1]. The

evaluation method looks not only into angular error as used in the thesis on the Yosemite sequence,

but also several other methods of evalauating optical flow accuracy such as motion vector end-point

errors and sum of squared differences over the frame. Baker et al have prepared various test sets with

novel methods of determining the ground truth optical flow and make the evaluation tool available

over the internet to allow up-to-date performance comparisons with other estimation techniques.

The method presented in the thesis is not subjected to these tests as the thesis objective is accurate

boundary detection, not accurate optical flow estimation.



Chapter 6

Conclusions and Reflections

Closing the thesis, the work done is summarised and the contributions made are stated. Conclusions

are drawn from the preceding work and future directions are reflected on.
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6.1 Introduction

In the last chapters the concept of tensor voting used as a motion segmentation tool has been

described. The theory has been explained, analysis done on various synthetic image sequences and

testing of the algorithms conducted on natural image sequences.

This chapter concludes the thesis by summarising the work, discussing novel contributions made

and suggesting potential future work.

6.2 Summary

The need for accurate motion segmentation in video compression techniques is still very even though

data bandwidth has increased. There are still major content-providing networks that wish to place

more video channels onto limited bandwidth such as on satellite television channels. For the most

part the content can be compressed off-line, and the economies of scale do not avoid using super-

computing capability to achieve high compression.

Tensor voting provides a framework where sequence features can be extracted while simultaneously

rejecting outliers. The normal geometric features of point, lines and surfaces are well described

in the literature. This thesis looks at extracting geometric features that are of interest to motion

segmentation using tangential skew tensor voting. A novel geometric feature of skewness is identified,

analysed and applied to image sequences. The algorithm uses all the data available in the sequence

without doing censoring and densification. The framework maintains the single step extraction of

features that makes the tensor voting approach attractive and adds skewness to allow occlusion and

disocclusion to be detected.

The tangential skew tensor voting is aligned to characterising motion traces through a spatio-

temporal volume. The kernel is modified to place the energy into the tangential direction, aligning

its behavior to the desired need for the problem. The skewness is obtained by making the kernel

asymmetric without adversely affecting any other attributes of the tangential tensor voting.

The encoding of the tensor is done directly from the data available and does not make use of block

matching techniques to obtain motion information in the tensor. The data used is the spatio-

temporal position of the pixel and the colour attributes of the pixel. Various cases are explored

allowing adjacent pixels to be used in the token as well. The dimesionality of the tensor rises rapidly

and the equivalent of a 5 × 5 block matching has a dimensionality of N = 72.

Special techniques on Graphic Processor Units (GPUs) are implemented to face the computational
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challenge and the applicability of GPUs on tensor voting frameworks is demonstrated.

The algorithm developed is applied to natural sequences with varying degrees of success. Efforts

to optimise the free parameters are made but the results are not in-line with the ideal case. The

potential reasons for this are discussed and leave room for further work in the field.
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6.3 Summary of contributions

This thesis has extended the use of tensor voting in moving object segmentation in video sequences.

The tensor voting framework allows a one-step approach to extracting motion features in a video

sequence. The extensions require extensive computational resources, which were developed during

the course of the research. These extensions are discussed individually and the computational

implementation is also discussed. Several concepts thought to be novel were introduced.

Tangential voting

The voting methods in the literature make use of a normal or surface feature obtained from the

tensor voting process. This was adapted to provide a tangential or aligned feature voting process,

firstly in a 3D case making use of cross products and then into the generalised N dimensional case.

The voting kernel was changed appropriately to reflect the tangential voting in N dimensions and

the validity of the kernel was checked in 3D.

Direct data tensor encoding

Instead of making use of normal block matching techniques to determine inter-frame motion, the

tensors are constructed directly from the spatio-temporal volume pixels. Several cases were investi-

gated with growing dimensionality. The direct encoding allows a small region of support to make a

significant contribution to pixel associations in the tensor voting framework.

Non-symmetrical kernel

The kernels used in the literature are symmetrical. A non-symmetrical kernel was developed to

allow the concept of skewness to be developed in the tensor voting framework. The non-symmetrical

kernel was checked against its symmetrical counterpart to determine its validity in the tensor voting

framework. It was found to behave in much the same way, except when the properties of skewness

were desired.

Tensor skewness

In order to determine end caps of motion traces, where occlusion or disocclusion takes place, a

concept from the MRI field was expanded on, and the third order tensor representation was developed

in the tensor voting framework. It allows other useful features to become apparent, such as the start

and end of motion traces in the spatio-temporal volume, by finding the N dimensional projection

of the third-order tensor in the second-order space. The resulting Tensor Skewness map or TS

map demonstrates motion edge boundary features and differentiates between left and right hand

movement. Simple matched filter techniques reinforced the extraction of an often noisy skewness
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parameter in the TS map to provide motion boundary detection.

Tensor voting implementation

With the advent of cost-effective Graphic Processor Units (GPU), the tensor voting framework was

adapted to the GPU especially in the high-dimensional tensor voting problem. Speed increases of

up to seven times that of a PC are observed.
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6.4 Reflections

Using all the information in the vicinity of an image pixel without any transformation that distorts

or reduces the information of the pixel is of great value. However, sensitizing the process to this

information can lead to poor performance in noisy image data, especially when non-linear techniques

such as eigen-decomposition are used. This becomes evident in the poor noise immunity exhibited

when using natural images, and needs further investigation.

In natural images there are large sections where the colour information is fairly homogeneous. The

tensor voting framework presented in this thesis does not remove low saliency areas and then re-

interpolate them — it makes use of all pixels based on the underlying data. This leads to problems

in these areas, and it is probable that a refining process similar to the tensor voting frameworks

presented by other authors is necessary to address deficiencies in these areas.

The selection of tensors where the basis is not orthogonal and non-stationary could cause poor

performance and needs to be investigated further.

The skewness measure in the spatio-temporal volume is derived from the specific tangential orien-

tation in N dimensions. This thesis used the x projection of this skewness only. In a rigorous sense,

this needs to be aligned to the orientation. It poses a problem in that the skewness measure is

known only on the regular grid in the spatio-temporal volume. By making use of interpolation or

nearest neighbor techniques, a more rigorous solution is possible. For the purposes of this thesis,

the problems posed were made to have a significant x component in order to demonstrate the use

of the skewness measure.

The introduction of the third-order tensor into the tensor voting framework has made a step forward

in video motion segmentation. Due to the complexity of introducing a three-dimensional property

into a high-dimensional problem, several simplifications were necessary. Even so the third order

tensor used a fair portion of the processing capability in deriving the skewness measure. The

memory constrained GPU also imposed upper limits in computation due to the third order tensor.

As processing and memory capability increases in the GPU field, these problems will be lessened.

If object boundaries have motion vectors that are parallel but opposite, in a shearing arrangement,

the skewness measure will not pick up a boundary. The method may need to be augmented with a

form of decision logic similar to what Min [45] used in determining boundaries. A more comprehen-

sive approach to cover the various failure modes of skewness would make a useful extension to this

work.

Overall, the introduction of the skewness measure and direct data encoding in the tensor framework
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opens a further avenue in moving object segmentation in video scenes. The motivation for using the

tensor framework in this manner is to be able to segment closely adjacent (in 2D) portions of the

image such as the branches in the Flower Garden sequence, as well as to declare openings in objects

as demonstrated in the Mobile Calender sequence. It is useful in automatically giving layering

information as part of the directly extracted information, as well as being able to accurately localise

object boundaries through the use of small 2D kernels. The method currently does not interpolate

data and only operates on the underlying data, maximising information use.

The GPU implementation presented fair gain on a CPU implementation, but if more effort is directed

to segmenting the tensor voting problem in a way aligned to the GPU, better performance will be

seen. Aspects that can be looked into that will cause substantial performance increase would be the

use of memory coalescing between threads as the memory bandwidth is the limiting factor in the

algorithm. Unfortunately, this is not trivial as the tensor voting problem requires large portions of

memory that can only be found in the slow global memory. Currently the very small portions of

fast memory are not sufficient for higher dimensional tensor voting.

Although the concept of skewness is an inherent geometric feature that can be extracted from the

tensor voting process, the full impact needs to be explored further as a useful parameter in motion

segmentation. The increase in parallel computing capability can allow exhaustive Monte Carlo

simulation or more voters to be used per votee, which is currently limited in this thesis to 32.
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University, May 1996.

[10] , Motion-based segmentation of image sequences using orientation tensors, Proceedings

of the SSAB Symposium on Image Analysis (1997), 31–35.

[11] , Spatial domain methods for orientation and velocity estimation, Lic. thesis, Dept. EE,
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