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Abstract

The visual hull is the largest object that is consistent with a set of
silhouette views of an actual object. The visual hull can be built
from a set of silhouettes in which the viewpoint corresponding to
each silhouette is known. We show how several sets correspond-
ing to the same rigid object, each containing a small number of
silhouettes, can be merged into a single large set. In order to do
this, the relative pose between the sets must be computed so that
each viewpoint can be specified in a common reference frame. We
show how the poses can be computed by enforcing silhouette con-
sistency constraints between the sets. The single merged silhouette
set can then be used to build a visual hull model that is a closer
approximation to the actual object than visual hulls built from any
of the original sets.

1 Introduction

Shape-from-silhouette techniques are often used as a relatively
simple means for forming approximate 3D models of an object.
The visual hull is the largest object that is consistent with a given
set of silhouettes and associated known viewpoints; it is often used
as an approximate 3D model.

1.1 The Visual Hull Concept

The term visual hull was coined by Laurentini [7] in the 1990s,
but the use of the largest silhouette-consistent object as a means for
3D modelling dates back to the work of Baumgart in the 1970s [2].
Initially, the term visual hull was used to describe the largest object
consistent with all possible silhouettes, but the term is usually used
to refer to the largest object that is consistent with a finite set of
available silhouettes.

The visual hull concept is illustrated in Figure 1. Figure 1(a)
shows two silhouette views of a duck (the actual object that is be-
ing modelled). Camera centres are represented by small spheres.
For convenience, the image planes are placed in front of the cam-
era centres, and the projected silhouette views are shown non-
inverted; for the purposes of this work, this setup is geometrically
equivalent to placing the image planes behind the camera centres.
Visual cones corresponding to each silhouette are shown in Fig-
ure 1(b). A visual cone is the volume of space that the actual
object cannot lie outside of, given the observed silhouette. The
intersection of the visual cones is the visual hull (shown in Fig-

ure 1(c)). The visual hull cannot be smaller than the actual object.
With two silhouettes, the visual hull is often a poor approxima-
tion to the actual object. However, if further silhouette views are
added, more information about which volumes of space are empty
is added, and the visual hull becomes a better approximation to the
actual object.

In order to determine the visual hull corresponding to a set of
silhouettes, the cameras that produced the images must be cali-
brated. This means that the internal camera parameters (such as
focal length, principal point and lens distortion parameters) and
the pose or external camera parameters (the position and orienta-
tion of the cameras in a common reference frame) must be known.

1.2 Related Work

Various means have been used to determine the pose correspond-
ing to each silhouette view. For instance, Shakhnarovich et al. [11]
describe a system that uses four fixed cameras. The pose of each
camera is determined once-off (in a common reference frame) us-
ing a calibration object. Okatani and Deguchi [10] use a gyro sen-
sor to determine the orientation of a single camera that is moved
to different viewpoints. The positional component of the pose is
then determined from the silhouette images themselves. Niem and
Buschmann [9] use a single camera and a turntable to obtain mul-
tiple silhouette images of an object at different viewpoints. The
relative poses of the turntable platform with respect to the cam-
era are determined using a calibration object. Wong [12] also uses
turntable sequences, but is able to determine the relative poses of
the silhouettes without the use of a calibration object; the silhou-
ettes of the object being modelled, along with the assumption of
circular motion, are used to determine the relative poses. The so-
lution is subsequently refined by removing the assumption of per-
fect circular motion and adjusting the pose estimates to minimise a
cost function based on the epipolar tangency constraint (explained
in Section 2).

1.3 Overview

In this work, a method for obtaining a large set of silhouettes us-
ing a system consisting of a small number of fixed cameras is pre-
sented. The relative poses of the cameras are known in a common
reference frame (a once-off calibration process is used). Our sys-
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Figure 1: Two silhouette views of a duck showing (a) the cameras, each represented
by a camera centre and image plane, (b) the visual cones corresponding to each of the
two silhouettes, and (c) the visual hull corresponding to the two silhouettes.

tem captures sets of silhouettes� of an object. Each set of silhou-
ettes is captured with the object in a different pose, so that each
set consists of silhouettes from different viewpoints. We show
that for a rigid object, the relative poses of the object can be de-
termined by minimising a cost function based on a measure of
inconsistency between the different sets of silhouettes. (A set of
silhouettes is consistent if a 3D object exists that could have pro-

�In this paper, a set of silhouettes refers to silhouettes whose viewpoints are known
in a common reference frame.

duced the set.) The cost for a candidate relative pose is a measure
of the inconsistency that would occur across the silhouettes of two
sets, if the candidate pose were used to merge the sets by specify-
ing all viewpoints in a common reference frame. Once the relative
poses are computed, the sets of silhouettes can all be merged into
a single large set of silhouettes. A visual hull model can then be
built from the large set of silhouettes. This visual hull model is a
closer approximation to the actual object than a visual hull model
built from any of the original sets. This is because a larger num-
ber of silhouettes with known viewpoints allows a greater portion
of space known not to belong to the actual object, to be removed.
The method allows a greater range of viewpoints to be used than
can be obtained from a single camera and turntable setup. For in-
stance, a turntable setup would not be able to model the hole of a
doughnut, if the doughnut were placed flat on the turntable. This
is because the viewpoints corresponding to a turntable sequence of
silhouettes lie on a circle in the viewing sphere, whereas with our
method, the viewpoints are well-distributed over the entire view-
ing sphere.

Section 2 describes the conditions that a silhouette set must ful-
fil in order to be consistent. Because of noise associated with the
calibration parameters and segmentation, silhouettes will not, in
practice, be perfectly consistent. Methods for computing a degree
of inconsistency are therefore presented. Section 3 describes how
the relative pose between sets of silhouettes can be determined
by minimising the degree of inconsistency between them. Some
results obtained using our five camera system are shown in Sec-
tion 4. Section 5 summarises the paper.

2 Silhouette Consistency

There are two constraints which limit the possible shape of a sil-
houette at a given viewpoint. The possible shape is limited by the
information contained in the remaining silhouettes of the set. First,
we describe the epipolar tangency constraint, which is used in this
work. Our formulation of the cost function is very similar to that
of Wong [12]. Next, for completeness, we briefly describe another
constraint that we call the visual hull projection constraint. We do
not currently make use of this constraint for pose estimation.

2.1 The Epipolar Tangency Constraint

This section introduces several geometric concepts such as
epipoles, frontier points, epipolar tangencies and the essential ma-
trix. The epipolar tangency constraint, which is based on these
concepts, is then explained. It is shown how a measure of inconsis-
tency, based on the epipolar tangency constraint, can be computed.
If a candidate pose is used to merge two sets of silhouettes, then
the measure of inconsistency can be used as a cost associated with
the candidate pose. By adjusting the pose parameters to minimise
the cost, a good estimate of the true pose can be computed.

Figure 2 shows the same scene as shown in Figure 1, along
with some additional points and planes. The line joining the two
camera centres C1 and C2 is called the baseline. It pierces the
image plane of camera 1 at e12 and the image plane of camera 2
at e21. The projection of a camera centre onto the image plane
of another camera is termed an epipole. The points e12 and e21



are epipoles. In the figure, the epipoles are represented as small
circles (projections of spheres) on the image planes. Since we are
not looking directly onto the image planes, the circles appear as
ellipses. Note that the epipoles do not necessarily lie in the visible
region of the image plane (corresponding to the finite extent of the
camera’s sensor).

The two planes π0 and π1 that pass through the baseline and are
tangent to the duck are shown. As long as the baseline does not
pass through the object, there will be two such planes for any ob-
ject. The points P0 and P1, where the planes touch the object’s sur-
face, are termed frontier points [5]. Since the planes pass through
both camera centres and graze the surface of the object, the fron-
tier points project onto the silhouette boundary in both views. The
projection of a frontier point is the tangency point of a silhouette
tangent line that passes through the epipole. A projection of a fron-
tier point is therefore termed an epipolar tangency. The epipolar
tangencies p120 and p210 are projections of P0, and p121 and p211
are projections of P1. (The notation pijk is used so that i indi-
cates the number of the camera whose image plane the point lies
on, j indicates the number of the opposite camera of the silhou-
ette pair, and k indicates to which of the two frontier points pijk
corresponds.)

For the purpose of computation, silhouettes are represented as
polygons in normalised image coordinates. The normalised co-
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Figure 2: Two views of the epipolar geometry of a scene: (a) shows a front view, and
(b) shows a side view looking onto the scene in a direction parallel to the baseline.
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Figure 3: The epipolar tangency constraint: the epipolar tangent line touches the
silhouette at the projection of the frontier point, as shown in (a) and (b); the projection
of this line onto the image plane of the opposite camera is constrained to coincide with
the opposite epipolar tangency line.

ordinates for an image point are the x- and y-coordinates of the
position where the corresponding 3D ray pierces the z � 1 plane
in the camera’s reference frame. Since the internal camera param-
eters are known (calibrated cameras are used), pixel coordinates
can be converted to normalised image coordinates.

The intrinsic geometry between the views i and j can be encap-
sulated by the 3� 3 essential matrix � ji [6]. If xi represents the
homogeneous coordinates of an image point in normalised image
coordinates from view i, and x j represents the corresponding point
in view j, then xi is constrained to lie on the line � jix j in view i
so that

x�i � jix j � 0� (1)

If the relative pose between view i and view j is described by
a rotation represented by the matrix � followed by a translation
represented by the vector t that transform points from the reference
frame of camera j to the reference frame of camera i, then the
essential matrix can be computed using

� ji � �t���� (2)

The antisymmetric matrix �t�� is computed from the translation
vector t � �tx�ty�tz�� using

�t�� �

�
�

0 �tz ty
tz 0 �tx

�ty tx 0

�
�

� (3)
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Figure 4: Epipolar tangent lines with the projection of the epipolar tangent lines
of the opposite view and incorrect pose information: since the pose information is
incorrect, the epipolar tangent lines do not project onto one another. The silhouettes
are inconsistent with one another for the given viewpoints. The reprojection error is
a measure of the degree of inconsistency.

The essential matrix can therefore easily be computed for a given
pose.

The essential matrix can be used to compute the normalised im-
age coordinates of the epipoles. The epipoles eij and e ji are the
right and left nullspaces of � ji respectively. If ���� is the singu-
lar value decomposition of � ji, then the last column of � is eij (in
homogeneous coordinates). Since �ij � �

�
ji, the epipole e ji can be

computed in a similar manner.
Figures 3(a) and (b) show the epipolar tangency lines for each

silhouette image of the duck example. Each line lies in a tangent
plane containing a frontier point, and therefore must project onto
the corresponding line in the opposite image: this is the epipolar
tangency constraint. In other words, in the noiseless case, the line
passing through eij and pijk is the same line as � jip jik.

If there are inaccuracies in the silhouettes or the pose, then the
line passing through eij and pijk will not, in general, be the same
line as � jip jik. Figures 4(a) and (b) show the noisy case in which
there are inaccuracies in the assumed relative pose between the
cameras. Note that the epipoles are positioned differently to Fig-
ure 3, since the pose is incorrect. The projection of the opposite
camera’s epipolar tangency line is not exactly coincident with the
epipolar tangency line on the image plane. Reprojection errors can
be computed as a measure of the inconsistency between a pair of
silhouettes with an associated pose value. The reprojection error

is the shortest distance from an epipolar tangency to the epipolar
line of the corresponding point in the opposite image. The figure
shows the reprojection errors d120, d121, d210 and d211.

The distance dijk between an epipolar tangency pijk and the pro-
jection of the epipolar line from the opposite camera that passes
through the tangency point p jik can be computed using the essen-
tial matrix.

dijk �
p�ijk�ijp jik�

��ijp jik�
2
1 ���ijp jik�

2
2

(4)

The expressions ��ijp jik�
2
1 and ��ijp jik�

2
2 denote the first and sec-

ond elements of the vector ��ijp jik�
2. Note that pij0 and pij1 are

vertices of the polygon representing the silhouette. To determine
which two polygon vertices are the epipolar tangencies, the slope
of the line from each polygon vertex to the epipole must be exam-
ined.

For two sets of silhouettes and an associated pose, a measure of
inconsistency across all silhouettes can be computed by consider-
ing all possible pairings of silhouettes in the first set with silhou-
ettes in the second set. This measure of inconsistency is treated as
the cost function associated with the pose. For a first set consisting
of m silhouettes, and a second set consisting of n silhouettes, it is
computed by summing the squared reprojection errors across all
cases as follows:

cost �
m

∑
i�1

n

∑
j�1

1

∑
k�0

d2
ijk� (5)

2.2 The Visual Hull Projection Constraint

We note that the fulfilment of the condition imposed by the epipo-
lar tangency constraint is a necessary, but not a sufficient condition
for silhouette consistency.

A silhouette cannot lie outside the projection of the visual hull
of the remaining silhouettes in the set. If it were to do so, it would
be providing contradictory information, since the remaining sil-
houettes indicate that the volume of space corresponding to the
area outside the visual hull projection is empty. A measure of this
form of inconsistency could be made by computing the area of
each silhouette that lies outside the visual hull projection formed
from the remaining silhouettes. This measure would be slow to
compute and is thus not suited for pose optimisation, since the
measure would have to be computed for each set of pose parame-
ters evaluated by the optimisation routine.

3 Pose Estimation

In order to merge two silhouette sets into a single set, the rela-
tive pose between the two sets must be computed. This pose cor-
responds to the difference in pose between the two poses of the
actual object on the two occasions that multiple silhouettes of the
object were captured. The pose is determined by adjusting the
pose parameters to minimise the cost function of Equation (5).

A quaternion and a translation vector are used to parameterise
the pose between two sets. The Levenberg-Marquardt method [6]
is used to adjust the seven pose parameters to minimise the cost
function. It is important to provide the Levenberg-Marquardt rou-
tine with a good initial estimate of the pose parameters, otherwise



the routine may converge to a local minimum that is far from the
global minimum.

Wong [12] minimises essentially the same cost function, but
assumes circular motion between individual silhouettes in order to
to form an initial estimate. Additional silhouettes from arbitrary
viewpoints can later be incorporated, but the user must manually
determine the initial pose estimate for each additional view.

Unlike Wong, we are dealing with sets of silhouettes, rather
than individual silhouettes; in our case the relative poses between
silhouettes in the set is known in advance. This means that the
visual hulls corresponding to the sets can be used to form initial
pose estimates.

The translational component of the pose is estimated by using
the difference between the centroids of the visual hull models cor-
responding to each of the two sets. The rotational component can
be estimated by determining the transformation that will align the
principal axes of the two visual hull models. Since there are four
ways in which the principal axes can be aligned, we use all four as
initial estimates for four separate optimisations. If none of these
four starting points yield a pose with sufficiently low associated
cost, then random rotations drawn from a uniform distribution [1]
are computed and used as initial estimates until a sufficiently low
associated cost is obtained. This approach is possible since the
cost function is fast to evaluate.

Once two silhouette sets have been merged into one, additional
sets can be merged with the merged set in the same manner.

4 Experimental Results

Our system consists of five CCD cameras that are mounted so that
they are well-spaced about the viewing hemisphere. The five im-
age set is taken of the object while it is in free flight. To obtain
multiple sets of five images, we simply drop the object into the
common field of view several times. Typically, the orientation of
the object varies substantially each time it is dropped past the cam-
eras.

We calibrate our cameras using an icosahedron calibration ob-
ject with coded target patterns on its faces [4]. By locating the
positions of coded target centres across multiple images, it is pos-
sible to infer the camera parameters.

A fast, simple threshold-based segmentation algorithm is used
to determine the polygon that separates the foreground from the
background. The number of vertices in the polygons is then re-
duced using the Douglas-Peucker method [3]. We have coded a
C++ implementation of an efficient polyhedral visual hull algo-
rithm [8] to build the polyhedral models. The polyhedral visual
hull models can be viewed as VRML (Virtual Reality Modelling
Language) models.

Figure 5 shows an example of visual hull models of a wing nut
that was dropped through the system four times. Notice how each
of the five-view models is quite coarse, with a lot of extra volume
around the hole region, yet in the twenty-view case, the combined
information can be used to build a visual hull model that looks
relatively accurate.

Figure 6 shows an example of a toy cat. Again, notice how
the twenty-view model looks more accurate than any of the visual
hull models built from the five silhouettes in the original sets. Fig-
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Figure 5: Visual hull models of a wing nut: (a)–(d) show four models each built from
five silhouettes, (e) shows the model built from the 20 silhouettes used in (a)–(d) after
the poses of all silhouettes have been determined in a common reference frame.

ure 7 shows the twenty visual cones that correspond to the twenty
silhouettes and that were used to build the model shown in Fig-
ure 6. Notice how the cones are well-distributed about the viewing
sphere.

The entire process of determining the relative poses (three poses
must be determined to merge four silhouette sets) and computing
the twenty-view visual hull model takes approximately 3 seconds
on a 2.4 GHz Pentium 4 machine for the examples shown. Each of
the coarse five-view visual hull models is built from the silhouette
polygons in approximately 70 ms.

5 Summary

We have shown that sets of silhouettes of a rigid object can be
merged into a single silhouette set by determining the relative pose
between sets. The relative pose is determined by minimising a cost
function based on the epipolar tangency constraint. The minimi-
sation routine requires a good initial pose estimate in order to be
likely to converge to the correct set of pose parameters. Wong [12]
showed that a good initial estimate could be made for the pose of
individual silhouettes, if it could be assumed that there is a circular
motion between successive views. In this paper, we have shown
that a good initial pose estimate can also be obtained if sets of
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Figure 6: Visual hull models of a toy cat: (a)–(d) show four models each built from
five silhouettes, (e) shows the model built from the 20 silhouettes used in (a)–(d) after
the poses of all silhouettes have been determined in a common reference frame.

small numbers of silhouettes are used. The relative viewpoint of
each silhouette in a set is known in advance. An initial estimate
of the translation component of the pose is computed as the dif-
ference between the centroids of the two visual hull models corre-
sponding to the two sets that are to be merged. An initial estimate
of the rotational component of the pose can either be computed by
determining the alignment between the principal axes of the visual
hulls, or by testing successive random rotations. The approach of

Figure 7: The twenty visual cones of the cat

using random rotations is feasible because the cost function is fast
to compute for a given pose parameter set, and because the number
of degrees of freedom for a rotation is relatively small. Our results
show that the visual quality of 3D models built from merged sil-
houette sets is better than that of the models built from the original
silhouette sets.
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