
The Discrete Fourier Transform

The discrete-time Fourier transform (DTFT) of a sequence isa continuous

function of!, and repeats with period2�. In practice we usually want to

obtain the Fourier components using digital computation, and can only

evaluate them for a discrete set of frequencies. The discrete Fourier transform

(DFT) provides a means for achieving this.

The DFT is itself a sequence, and it corresponds roughly to samples, equally

spaced in frequency, of the Fourier transform of the signal.The discrete

Fourier transform of a lengthN signalxŒn�, n D 0; 1; : : : ; N � 1 is given by

XŒk� D

N �1
X

nD0

xŒn�e�j.2�=N /kn:

This is the analysis equation. The corresponding synthesisequation is

xŒn� D
1

N

N �1
X

kD0

XŒk�ej.2�=N /kn:

When dealing with the DFT, it is common to define the complex quantity

WN D e�j.2�=N /:

With this notation the DFT analysis-synthesis pair becomes

XŒk� D

N �1
X

nD0

xŒn�W kn
N

xŒn� D
1

N

N �1
X

kD0

XŒk�W �kn
N :

An important property of the DFT is that it is cyclic, with period N , both in the
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discrete-time and discrete-frequency domains. For example, for any integerr ,

XŒk C rN � D

N �1
X

nD0

xŒn�W
.kCrN /n

N D

N �1
X

nD0

xŒn�W kn
N .W N

N /rn

D

N �1
X

nD0

xŒn�W kn
N D XŒk�;

sinceW N
N D e�j.2�=N /N D e�j 2� D 1. Similarly, it is easy to show that

xŒnC rN � D xŒn�, implying periodicity of the synthesis equation. This is
important — even though the DFT only depends on samples in theinterval0 to
N � 1, it is implicitly assumed that the signals repeat with period N in both
the time and frequency domains.

To this end, it is sometimes useful to define the periodic extension of the signal
xŒn� to be

QxŒn� D xŒn modN � D xŒ..n//N �:

Heren modN and..n//N are taken to meann moduloN , which has the value
of the remainder aftern is divided byN . Alternatively, ifn is written in the
form n D kN C l for 0 � l < N , then

n modN D ..n//N D l:

N

0

0

n

n

N

xŒn�

QxŒn�

Similarly, the periodic extension ofXŒk� is defined to be

QXŒk� D XŒk modN � D XŒ..k//N �:
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It is sometimes better to reason in terms of these periodic extensions when
dealing with the DFT. Specifically, ifXŒk� is the DFT ofxŒn�, then the inverse
DFT of XŒk� is QxŒn�. The signalsxŒn� and QxŒn� are identical over the interval0

to N � 1, but may differ outside of this range. Similar statements can be made
regarding the transformXŒk�.

1 Properties of the DFT

Many of the properties of the DFT are analogous to those of thediscrete-time
Fourier transform, with the notable exception that all shifts involved must be
considered to be circular, or moduloN .

Defining the DFT pairsxŒn�
D

 !XŒk�, x1Œn�
D

 !X1Œk�, andx2Œn�
D

 !XŒk�,
the following are properties of the DFT:

� Symmetry:

XŒk� D X�Œ..�k//N �

RefXŒk�g D RefXŒ..�k//N �g

ImfXŒk�g D �ImfXŒ..�k//N �g

jXŒk�j D jXŒ..�k//N �j

^XŒk� D �^XŒ..�k//N �

� Linearity: ax1Œn�C bx2Œn�
D

 !aX1Œk�C bX2Œk�.

� Circular time shift: xŒ..n �m//N �
D

 !W km
N XŒk�.

� Circular convolution:
N �1
X

mD0

x1Œm�x2Œ..n �m//N �
D

 !X1Œk�X2Œk�:

Circular convolution between two N-point signals is sometimes denoted
by x1Œn�
N xŒn�.
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� Modulation:

x1Œn�x2Œn�
D

 !
1

N

N �1
X

lD0

X1Œl �X2Œ..k � l//N �:

Some of these properties, such as linearity, are easy to prove. The properties

involving time shifts can be quite confusing notationally,but are otherwise

quite simple. For example, consider the 4-point DFT

XŒk� D

3
X

nD0

xŒn�W kn
4

of the length4 signalxŒn�. This can be written as

XŒk� D xŒ0�W 0k
4 C xŒ1�W 1k

4 C xŒ2�W 2k
4 C xŒ3�W 3k

4

The productW 1k
4 XŒk� can therefore be written as

W 1k
4 XŒk� D xŒ0�W 1k

4 C xŒ1�W 2k
4 C xŒ2�W 3k

4 C xŒ3�W 4k
4

D xŒ3�W 0k
4 C xŒ0�W 1k

4 C xŒ1�W 2k
4 C xŒ2�W 3k

4

sinceW 4k
4 D W 0k

4 . This can be seen to be the DFT of the sequence

xŒ3�; xŒ0�; xŒ1�; xŒ2�, which is precisely the sequencexŒn� circularly shifted to

the right by one sample. This proves the time-shift propertyfor a shift of

length1. In general, multiplying the DFT of a sequence byW km
N results in an

N-point circular shift of the sequence bym samples. The convolution

properties can be similarly demonstrated.

It is useful to note that the circularly shifted signalxŒ..n �m//N � is the same

as the linearly shifted signalQxŒn �m�, where QxŒn� is the N-point periodic

extension ofxŒn�.
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N

0
n

0
n

0
n

0
n

N

N

N

xŒn�

QxŒn�

QxŒn �m�

xŒ..n �m//N �

On the interval0 to N � 1, the circular convolution

x3Œn� D x1Œn�
N x2Œn� D

N �1
X

mD0

x1Œm�x2Œ..n �m//N �

can therefore be calculated using the linear convolution product

x3Œn� D

N �1
X

mD0

x1Œm� Qx2Œn �m�:

Circular convolution is really just periodic convolution.

Example: Circular convolution with a delayed impulse sequence
Given the sequences

N0
n

0
n

N

x1Œn� x2Œn�
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the circular convolutionx3Œn� D x1Œn�
N x2Œn� is the signalQxŒn� delayed by

two samples, evaluated over the range0 to N � 1:

N0
n

x3Œn�

Example: Circular convolution of two rectangular pulses
Let

x1Œn� D x2Œn� D

8

<

:

1 0 � n � L � 1

0 otherwise:

If N D L, then the N-point DFTs are

X1Œk� D X2Œk� D

N �1
X

nD0

W kn
N D

8

<

:

N k D 0

0 otherwise:

Since the product is

X3Œk� D X1Œk�X2Œk� D

8

<

:

N 2 k D 0

0 otherwise;

it follows that the N-point circular convolution ofx1Œn� andx2Œn� is

x3Œn� D x1Œn�
N x2Œn� D N; 0 � n � N � 1:

Suppose now thatx1Œn� andx2Œn� are considered to be length2L sequences by

augmenting with zeros. TheN D 2L-point circular convolution is then seen to

be the same as the linear convolution of the finite-duration sequencesx1Œn� and

x2Œn�:
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L

0
n

L N

0
n

NL

x1Œn� D x2Œn�

x1Œn�
N x2Œn�

2 Linear convolution using the DFT

Using the DFT we can compute the circular convolution as follows

� Compute theN -point DFTsX1Œk� andX2Œk� of the two sequencesx1Œn�

andx2Œn�.

� Compute the productX3Œk� D X1Œk�X2Œk� for 0 � k � N � 1.

� Compute the sequencex3Œn� D x1Œn�
N x2Œn� as the inverse DFT of
X3Œk�.

This is computationally useful due to efficient algorithms for calculating the
DFT. The question that now arises is this: how do we get thelinear convolution
(required in speech, radar, sonar, image processing) from this procedure?

2.1 Linear convolution of two finite-length sequences

Consider a sequencex1Œn� with lengthL points, andx2Œn� with lengthP

points. The linear convolution of the sequences,

x3Œn� D

1
X

mD�1

x1Œm�x2Œn �m�;

is nonzero over a maximum length ofLC P � 1 points:
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0 L
0

2

x 1[n
]

0 P
0

1

x 2[n
]

0 L+P−1
0

8

n

x 3[n
]

ThereforeLC P � 1 is the maximum length ofx3Œn� resulting from the linear

convolution.

The N-point circular convolution ofx1Œn� andx2Œn� is

x1Œn�
N x2Œn� D

N �1
X

mD0

x1Œm�x2Œ..n �m//N � D

N �1
X

mD0

x1Œm� Qx2Œn �m� W

It is easy to see that the circular convolution product will be equal to the linear

convolution product on the interval0 to N � 1 as long as we choose

N � LC P � 1. The process of augmenting a sequence with zeros to make it

of a required length is calledzero padding.

2.2 Convolution by sectioning

Suppose that for computational efficiency we want to implement a FIR system

using DFTs. It cannot in general be assumed that the input signal has a finite

duration, so the methods described up to now cannot be applied directly:
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0 P

h[
n]

0 L 2L 3L

n

x[
n]

The solution is to useblock convolution, where the signal to be filtered is
segmented into sections of lengthL. The input signalxŒn�, here assumed to be
causal, can be decomposed into blocks of lengthL as follows:

xŒn� D

1
X

rD0

xr Œn � rL�;

where

xr Œn� D

8

<

:

xŒnC rL� 0 � n � L � 1

0 otherwise:

0 L

n

x 0[n
]

L 2L

n

x 1[n
]

2L 3L

n

x 2[n
]
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The convolution product can therefore be written as

yŒn� D xŒn� � hŒn� D

1
X

rD0

yr Œn � rL�;

whereyr Œn� is the response

yr Œn� D xr Œn� � hŒn�:

0 L+P−1

n

y 0[n
]

L

n

y 1[n
]

2L

n

y 2[n
]

Since the sequencesxr Œn� have onlyL nonzero points andhŒn� is of lengthP ,
each response termyr Œn� has lengthLC P � 1. Thus linear convolution can
be obtained using N-point DFTs withN � LC P � 1. Since the final result is
obtained by summing the overlapping output regions, this iscalled the
overlap-addmethod.

0 L 2L 3L

y[
n]

An alternative block convolution procedure, called theoverlap-savemethod,
corresponds to implementing an L-point circular convolution of a P-point
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impulse responsehŒn� with an L-point segmentxr Œn�. The portion of the
output that corresponds to linear convolution is then identified (consisting of
L � .P � 1/ points), and the resulting segments patched together to form the
output.

3 Spectrum estimation using the DFT

Spectrum estimation is the task of estimating the DTFT of a signalxŒn�. The
DTFT of a discrete-time signalxŒn� is

X.ej!/ D

1
X

nD�1

xŒn�e�j!n:

The signalxŒn� is generally of infinite duration, andX.ej!/ is a continuous
function of!. The DTFT can therefore not be calculated using a computer.

Consider now that we truncate the signalxŒn� by multiplying with the
rectangular windowwr Œn�:

0 N−1
0

0.5

1

n

w
r[n

]

The windowed signal is thenxw Œn� D xŒn�wr Œn�. The DTFT of this windowed
signal is given by

Xw.ej!/ D

1
X

nD�1

xw Œn�e�j!n D

N �1
X

nD0

xw Œn�e�j!n:

Noting that the DFT ofxw Œn� is

Xw Œk� D

N �1
X

nD0

xw Œn�e�j 2�kn

N ;
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it is evident that
Xw Œk� D Xw .ej!/

ˇ

ˇ

!D2�k=N
:

The values of the DFTXw Œk� of the signalxw Œn� are therefore periodic
samples of the DTFTXw.ej!/, where the spacing between the samples is
2�=N . Since the relationship between the discrete-time frequency variable and
the continuous-time frequency variable is! D �T , the DFT frequencies
correspond to continuous-time frequencies

�k D
2�k

NT
:

The DFT can therefore only be used to find points on the DTFT of the
windowed signalxw Œn� of xŒn�.

The operation of windowing involves multiplication in the discrete time
domain, which corresponds to continuous-time periodic convolution in the
DTFT frequency domain. The DTFT of the windowed signal is therefore

Xw.ej!/ D
1

2�

Z �

��

X.ej� /W.ej.!��//d�;

whereW.ej!/ is the frequency response of the window function. For a simple
rectangular window, the frequency response is as follows:

0 8
0

0.5

1

0
0

8

w
r
Œn

�
jW

r
.e

j
!

/j

���

!

The DFT therefore effectively samples the DTFT of the signalconvolved with
the frequency response of the window.
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Example: Spectrum analysis of sinusoidal signalsSuppose we have the

sinusoidal signal combination

xŒn� D cos.�=3n/C 0:75 cos.2�=3n/; �1 < n <1:

Since the signal is infinite in duration, the DTFT cannot be computed

numerically. We therefore window the signal in order to makethe duration

finite:

0 8

−1
0
1

0 8
0

0.5

1

0 8

−1
0
1

n

x
Œn

�
w

r
Œn

�
x

w
Œn

�

The operation of windowing modifies the signal. This is reflected in the

discrete-time Fourier transform domain by aspreading of the frequency

components:
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The operation of windowing therefore limits the ability of the Fourier
transform to resolve closely-spaced frequency components. When the DFT is
used for spectrum estimation, it effectively samples the spectrum of this
modified signal at the locations of the crosses indicated:

0 1 2 3 4 5 6 7
0

2

4

6

jX
Œk

�j

k

Note that sincek D 0 corresponds to! D 0, there is a corresponding shift in
the sampled values.

In general, the elements of theN -point DFT ofxw Œn� containN evenly-spaced
samples from the DTFTXw .ej!/. These samples span an entire period of the
DTFT, and therefore correspond to frequencies at spacings of 2�=N . We can
obtain samples with a closer spacing by performing more computation.
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Suppose we form the zero-padded lengthM signalxM Œn� as follows:

xM Œn� D

8

<

:

xŒn� 0 � n � N � 1

0 N � n �M � 1:

TheM -point DFT of this signal is

XM Œk� D

M �1
X

nD0

xM Œn�e�j 2�

M
kn D

N �1
X

nD0

xw Œn�e�j 2�

M
kn

D

1
X

nD�1

xw Œn�e�j 2�
M

kn

The sampleXpŒk� can therefore be seen to correspond to the DTFT of the the

windowed signalxw Œn� at frequency!k D 2�k=M . SinceM is chosen to be
larger thanN , the transform values correspond to regular samples ofXw.ej!/

with a closer spacing of2�=M . The following figure shows the magnitude of
the DFT transform values for the8-point signal shown previously, but
zero-padded to use a32-point DFT:

0 5 10 15 20 25 30

−1
0
1

n

0 5 10 15 20 25 30
0

5

jX
Œk

�j
x

M
Œn

�

k

Note that this process increases the density of the samples,but has no effect on
the resolution of the spectrum.

If W.ej!/ is sharply peaked, and approximates a Dirac delta function at the
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origin, thenXw .ej!/ � X.ej!/. The values of the DFT then correspond quite
accurately to samples of the DTFT ofxŒn�. For a rectangular window, the
approximation improves asN increases:

0 32
0

0.5

1

0
0

32

0
0

w
r
Œn

�
jW

r
.e

j
!

/j
jX

w
.e

j
!

/j

�

�

��

��

!

The magnitude of the DFT of the windowed signal is

0 5 10 15 20 25 30
0

5

10

15

jX
Œk

�j

k

which is clearly easier to interpret than for the case of the shorter signal. As
the window length tends to1, the relationship becomes exact.

The rectangular window inherent in the DFT has the disadvantage that the peak
sidelobe ofWr .ej!/ is high relative to the mainlobe. This limits the ability of
the DFT to resolve frequencies. Alternative windows may be used which have
preferred behaviour — the only requirement is that in the time domain the
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window function is of finite duration. For example, the triangular window

0 32
0

0.5

1

0
0

0
0

w
r
Œn

�
jW

r
.e

j
!

/j
jX

w
.e

j
!

/j

�

�

��

��

!

leads to DFT samples with magnitude

0 5 10 15 20 25 30
0

5

10

jX
Œk

�j

k

Here the sidelobes have been reduced at the cost of diminished resolution —

the mainlobe has become wider.

The method just described forms the basis for theperiodogram spectrum

estimate. It is often used in practice on account of its perceived simplicity.

However, it has a poor statistical properties —model-based spectrum

estimates generally have higher resolution and more predictable performance.

Finally, note that the discrete samples of the spectrum are only a complete
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representation if the sampling criterion is met. The samples therefore have to

be sufficiently closely spaced.

4 Fast Fourier transforms

The widespread application of the DFT to convolution and spectrum analysis

is due to the existence of fast algorithms for its implementation. The class of

methods are referred to asfast Fourier transforms (FFTs).

Consider a direct implementation of an 8-point DFT:

XŒk� D

7
X

nD0

xŒn�W kn
8 ; k D 0; : : : ; 7:

If the factorsW kn
8 have been calculated in advance (and perhaps stored in a

lookup table), then the calculation ofXŒk� for each value ofk requires8

complex multiplications and7 complex additions. The 8-point DFT therefore

requires8 � 8 multiplications and8 � 7 additions. For an N-point DFT these

becomeN 2 andN.N � 1/ respectively. IfN D 1024, then approximately one

million complex multiplications and one million complex additions are

required.

The key to reducing the computational complexity lies in theobservation that

the same values ofxŒn�W kn
8 are effectively calculated many times as the

computation proceeds — particularly if the transform is long.

Theconventional decompositioninvolvesdecimation-in-time, where at each

stage a N-point transform is decomposed into twoN=2-point transforms. That
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is, XŒk� can be written as

XŒk� D

N=2�1
X

rD0

xŒ2r�W 2rk
N C

N=2�1
X

rD0

xŒ2r C 1�W
.2rC1/k

N

D

N=2�1
X

rD0

xŒ2r�.W 2
N /rk CW k

N

N=2�1
X

rD0

xŒ2r C 1�.W 2
N /rk:

Noting thatW 2
N D WN=2 this becomes

XŒk� D

N=2�1
X

rD0

xŒ2r�.WN=2/rk CW k
N

N=2�1
X

rD0

xŒ2r C 1�.WN=2/rk

D GŒk�CW k
N HŒk�:

The original N-point DFT can therefore be expressed in termsof two

N=2-point DFTs.

TheN=2-point transforms can again be decomposed, and the process repeated

until only 2-point transforms remain. In general this requireslog2N stages of

decomposition. Since each stage requires approximatelyN complex

multiplications, the complexity of the resulting algorithm is of the order of

N log2 N .

The difference betweenN 2 andN log2 N complex multiplications can

become considerable for large values ofN . For example, ifN D 2048 then

N 2=.N log2 N / � 200.

There are numerous variations of FFT algorithms, and all exploit the basic

redundancy in the computation of the DFT. In almost all casesan off-the-shelf

implementation of the FFT will be sufficient — there is seldomany reason to

implement a FFT yourself.
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