The Discrete Fourier Transform

The discrete-time Fourier transform (DTFT) of a sequen@easntinuous
function ofw, and repeats with periaziz. In practice we usually want to
obtain the Fourier components using digital computationd, @an only
evaluate them for a discrete set of frequencies. The des€i@trier transform
(DFT) provides a means for achieving this.

The DFT is itself a sequence, and it corresponds roughlyrtgobss, equally
spaced in frequency, of the Fourier transform of the sighlaé discrete

Fourier transform of a lengtl signalx[z],n = 0,1,..., N — 1 is given by
N-1 |
X[k] =) x[n]e/Cr/Nkn,
n=0

This is the analysis equation. The corresponding syntleegiation is

N-—1
1 .
_ j@r/N)kn
x[n] = v kE_O Xk]e )

When dealing with the DFT, it is common to define the complexrdity

Wy = e~ J@27/N)

With this notation the DFT analysis-synthesis pair becomes

N-1

X[k] =Y x[n]w§"

n=0

1 N—-1
x[n] =+ > XKWy,
k=0

An important property of the DFT is that it is cyclic, with ped N, both in the



discrete-time and discrete-frequency domains. For exayfi any integer,

N-—1 N-—1
Xk +rN =" xnWy ™" = 3 xmwkn wi )

n=0 n=0
N—-1

= Y x[nW§" = X[k],
n=0

sinceW = ¢=/@H/NIN = ¢=/2% — 1, Similarly, it is easy to show that
x[n + rN] = x[n], implying periodicity of the synthesis equation. This is
important — even though the DFT only depends on samples imtaeval0 to
N — 1, itis implicitly assumed that the signals repeat with peémo in both
the time and frequency domains.

To this end, it is sometimes useful to define the periodicrestta of the signal
x[n] to be
x[n] = x[n modN] = x[((n))n].

Heren mod N and((n))y are taken to meam moduloN, which has the value
of the remainder after is divided byN . Alternatively, ifn is written in the
formn = kN + [ for0 <[ < N, then

nmodN = ((n))y = 1.
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Similarly, the periodic extension of [k] is defined to be

X[k] = X[k modN] = X[((k))n].



It is sometimes better to reason in terms of these periodensions when
dealing with the DFT. Specifically, ik [k] is the DFT ofx[n], then the inverse
DFT of X[k] is x[n]. The signalsc[n] andx[n] are identical over the interval
to N — 1, but may differ outside of this range. Similar statementsloa made
regarding the transform [k].

1 Properties of the DFT

Many of the properties of the DFT are analogous to those ofliderete-time
Fourier transform, with the notable exception that alltshifivolved must be
considered to be circular, or moduho.

Defining the DFT pairs [n]«—s X [k], x1 [1]«— X1 [k], andx, [n] <= X [K],
the following are properties of the DFT:

e Symmetry:

X[k] = X*[((=k))N]
Re{X[k]} = RELX[((=k))n]}
IM{X[k]} = —Im{X[((=k))n]}

| X[k]] = [X[((=K))n]]
WX [k] = <X [((=k))n]

e Linearity: ax;[n] + bxa[n]«asa X, [k] + bX,[k].
e Circular time shift: x[((n — m)) y]«—>WE™ X [K].

e Circular convolution:
N-1
> xilmlxa[((n — m) ] X1 K Xalk].
m=0

Circular convolution between two N-point signals is someis denoted
by x1[n] @ x[n].



e Modulation:

N-1
D 1
xi[n]xa[n]e—+ > X1 lX2[((k = D)N].
1=0
Some of these properties, such as linearity, are easy tepidwe properties
involving time shifts can be quite confusing notationallyt are otherwise
guite simple. For example, consider the 4-point DFT

3

X[k] =) x[nw;S"

n=0

of the lengthd4 signalx|[n]. This can be written as
X[k] = x[0O]W2F + x[1IW* + x[2]WF + x[3]w K
The produch41k X[k] can therefore be written as

Wik X [k] = x[0)W,% + x[1]W2* + x[2]W2K + x[B|W
= x[3]W2* + x[0)WF + x[1]W 2 + x[2]w 3k

sinceW;** = W2 . This can be seen to be the DFT of the sequence
x[3], x[0], x[1], x[2], which is precisely the sequeng:] circularly shifted to
the right by one sample. This proves the time-shift propkntya shift of
length1. In general, multiplying the DFT of a sequencewm results in an
N-pointcircular shift of the sequence by samples. The convolution
properties can be similarly demonstrated.

It is useful to note that the circularly shifted signd{(n — m)) 5] is the same
as the linearly shifted signalln — m], wherex|n] is the N-point periodic
extension ofx[n].



x[n]

[,

On the intervaD to N — 1, the circular convolution
N-1

x3[n] = x1[n] @ xa2[n] = ) | x1[m]xal((2 —m))N]

m=0
can therefore be calculated using the linear convolutiolpct

N-1

x3[n] = Z x1[m]x2[n — m].

m=0
Circular convolution is really just periodic convolution.

Example: Circular convolution with a delayed impulse sequace
Given the sequences

o HMT“["]n

0o N 0 N




the circular convolution;[n] = x1[n] N) x2[n] Is the signak[n] delayed by
two samples, evaluated over the ralige N — 1:

[ x3[n]
[ 1 .
0 N
Example: Circular convolution of two rectangular pulses
Let
0<n<L-1
x1[n] = x2[n] = _
otherwise
If N = L, thenthe N-point DFTs are
N-1
N k=0
Xi[k] = Xolk] = Y Wy" = |
"0 0 otherwise
Since the product is
N2 k=0
Xslk] = X1 [k]Xa[k] = .
otherwise

it follows that the N-point circular convolution of; [#z] andx;[n] is
x3[n] = x1[n] ™) x2[n] = N, 0<n<N-1.

Suppose now that; [z] andx,[n] are considered to be leng2l. sequences by
augmenting with zeros. Th&¥ = 2L-point circular convolution is then seen to
be the same as the linear convolution of the finite-duratemjusences [z] and

Xz [n]:



2 Linear convolution using the DFT

Using the DFT we can compute the circular convolution a®tedl

e Compute theV-point DFTsX;[k] and X, [k] of the two sequences [«]
andx;[n].

e Compute the productsz[k] = X [k]X,[k]for0 <k < N — 1.

e Compute the sequenag[n] = x1[n] N x,[n] as the inverse DFT of
X3[k].

This is computationally useful due to efficient algorithros ¢alculating the
DFT. The question that now arises is this: how do we gelitigar convolution
(required in speech, radar, sonar, image processing) fiamptocedure?

2.1 Linear convolution of two finite-length sequences

Consider a sequenag[r] with length L points, andx,[n] with length P
points. The linear convolution of the sequences,

o

x3[n] = Z x1[m]xz[n —m],

m=—0o0

IS nonzero over a maximum length bf+ P — 1 points:
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ThereforeL + P — 1 is the maximum length af;[«] resulting from the linear
convolution.

The N-point circular convolution af[r] andx;[n] is

N-1 N-1
x[n] @ xa[n] = ) ximlxa[((n—m)n] = Y xilm]Faln —m]:
m=0 m=0

It is easy to see that the circular convolution product walldgual to the linear
convolution product on the intervalto N — 1 as long as we choose

N > L + P — 1. The process of augmenting a sequence with zeros to make it
of a required length is callezkro padding

2.2 Convolution by sectioning

Suppose that for computational efficiency we want to implenaeFIR system
using DFTs. It cannot in general be assumed that the inpoakigas a finite
duration, so the methods described up to now cannot be dpphectly:
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The solution is to usblock convolution, where the signal to be filtered is

segmented into sections of length The input signak|n], here assumed to be
causal, can be decomposed into blocks of lerig#s follows:

x[n] = Zxr[n —rL],
r=0

where

] x[n + rL] 0O<n<L-1
Xrln| =
’ 0 otherwise
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The convolution product can therefore be written as

y[n) = xfn] % bl = 3 yeln —rL].
r=0

wherey,[n] is the response

yr[n] = x;[n] * hin].

BT ——

y[n]
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Since the sequences|n] have onlyL nonzero points and[n] is of length P,
each response term [n] has lengthl. + P — 1. Thus linear convolution can
be obtained using N-point DFTs with > L + P — 1. Since the final result is
obtained by summing the overlapping output regions, thisiked the
overlap-add method.
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An alternative block convolution procedure, called tiverlap-savemethod,
corresponds to implementing an L-point circular convantof a P-point
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iImpulse responsk[n] with an L-point segment, [n]. The portion of the
output that corresponds to linear convolution is then iidiext(consisting of
L — (P — 1) points), and the resulting segments patched together no thoe
output.

3 Spectrum estimation using the DFT

Spectrum estimation is the task of estimating the DTFT ofaaix[r]. The
DTFT of a discrete-time signal[n] is

o

X(e?) = Z x[n]e/°",

n=—oo

The signalx[n] is generally of infinite duration, an&(e/®) is a continuous
function ofw. The DTFT can therefore not be calculated using a computer.

Consider now that we truncate the sign@t] by multiplying with the
rectangular window, [n]:

=i

0 N-1

The windowed signal is theny, [n] = x[n]w,[r]. The DTFT of this windowed
signal is given by

foe) N—-1
X (e/?) = Z Xy [n]e 7O = Z X [n]e 7",
n=—oo n=0

Noting that the DFT ofcy, [n] is

N—-1
Xulkl = " xy[nle™/ 55",
n=0
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it is evident that

X [k] = X (eja))|w=2nk/N .
The values of the DF X, [k] of the signalx,, [n] are therefore periodic
samples of the DTFX,, (¢/*), where the spacing between the samples is
27/ N. Since the relationship between the discrete-time frecyueariable and
the continuous-time frequency variableds= QT , the DFT frequencies
correspond to continuous-time frequencies

_ 2wk

=57

The DFT can therefore only be used to find points on the DTFhef t
windowed signalx,, [n] of x[n].

Qp

The operation of windowing involves multiplication in thesdrete time
domain, which corresponds to continuous-time periodicotution in the
DTFT frequency domain. The DTFT of the windowed signal ig¢tiare

. 1 (™ . .
Xu(e®) = o [ X)W @)
2 J_,
whereW (e/®) is the frequency response of the window function. For a ssmpl
rectangular window, the frequency response is as follows:
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The DFT therefore effectively samples the DTFT of the sigrmaivolved with
the frequency response of the window.
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Example: Spectrum analysis of sinusoidal signalSuppose we have the
sinusoidal signal combination

x[n] = coqxw/3n) + 0.75cog2x/3n), —00 < n < Q.

Since the signal is infinite in duration, the DTFT cannot bmpated
numerically. We therefore window the signal in order to m#ilesduration
finite:
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The operation of windowing modifies the signal. This is reéean the
discrete-time Fourier transform domain bgmreading of the frequency
components:
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The operation of windowing therefore limits the ability betFourier
transform to resolve closely-spaced frequency compongviten the DFT is
used for spectrum estimation, it effectively samples treespm of this
modified signal at the locations of the crosses indicated:

6 T T T T T T
=4t ®
=,
iZw [ { .
0 ® T ®
0 1 2 3 4 5 6 7

Note that sincé& = 0 corresponds ta = 0, there is a corresponding shift in
the sampled values.

In general, the elements of tdé-point DFT of x,, [1#] containN evenly-spaced
samples from the DTFK,, (e/?). These samples span an entire period of the

DTFT, and therefore correspond to frequencies at spacings V. We can
obtain samples with a closer spacing by performing more caation.
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Suppose we form the zero-padded lengifthsignalx s [12] as follows:

] x[n] 0<n<N-1
Xpmin| =
0 N<n<M-1.

The M -point DFT of this signal is

M-1 N-1
Xulkl = Y xalnle 735" = 37 xy [n]e/ Fn
n=0 n=0

o

= Z Xw [n]e—jzﬁﬂkn
n=—o00

The sampleX , [k] can therefore be seen to correspond to the DTFT of the the
windowed signak,, [n] at frequencyw, = 2k /M. SinceM is chosen to be
larger thanV, the transform values correspond to regular samplés,ag’)
with a closer spacing dfz/ M . The following figure shows the magnitude of
the DFT transform values for tiepoint signal shown previously, but
zero-padded to use3-point DFT:
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Note that this process increases the density of the sanipiebas no effect on
the resolution of the spectrum.

If W(e’/®) is sharply peaked, and approximates a Dirac delta functitimea
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origin, thenX,, (e/?) ~ X(e/?). The values of the DFT then correspond quite
accurately to samples of the DTFT «ofiz]. For a rectangular window, the
approximation improves a¥ increases:
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The magnitude of the DFT of the windowed signal is
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which is clearly easier to interpret than for the case of tiwrter signal. As
the window length tends teo, the relationship becomes exact.

The rectangular window inherent in the DFT has the disadggnthat the peak
sidelobe ofi, (¢/®) is high relative to the mainlobe. This limits the ability of
the DFT to resolve frequencies. Alternative windows may $&duvhich have
preferred behaviour — the only requirement is that in theetdomain the
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window function is of finite duration. For example, the tgatar window

P,
Lo AAL

leads to DFT samples with magnitude
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k

Here the sidelobes have been reduced at the cost of dimihiskelution —
the mainlobe has become wider.

The method just described forms the basis forgé@odogram spectrum
estimate. Itis often used in practice on account of its peedesimplicity.
However, it has a poor statistical propertiesmedel-based spectrum
estimates generally have higher resolution and more pgeddleperformance.

Finally, note that the discrete samples of the spectrummlyeaocomplete
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representation if the sampling criterion is met. The sasifflerefore have to
be sufficiently closely spaced.

4 Fast Fourier transforms

The widespread application of the DFT to convolution ancspen analysis
Is due to the existence of fast algorithms for its implemioa The class of
methods are referred to &sst Fourier transforms (FFTSs).

Consider a direct implementation of an 8-point DFT:

7
X[kl =) x[nWg",  k=0.....7.
n=0
If the factorsW8k” have been calculated in advance (and perhaps stored in a
lookup table), then the calculation &f[k] for each value ok requiress
complex multiplications and complex additions. The 8-point DFT therefore
requires8 x 8 multiplications and x 7 additions. For an N-point DFT these
becomeN? and N(N — 1) respectively. IfN = 1024, then approximately one
million complex multiplications and one million complexditions are
required.

The key to reducing the computational complexity lies indbservation that
the same values od‘[n]ng” are effectively calculated many times as the
computation proceeds — particularly if the transform isgon

Theconventional decompositionnvolvesdecimation-in-time, where at each
stage a N-point transform is decomposed into W@-point transforms. That
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IS, X [k] can be written as

N/2—1 N/2—1
Xkl= Y xrwgr+ Y e + 1w O
r=0 r=0
N/2—-1 N/2—-1
= Y xR+ Wy > x[2r + (W)
r=0 r=0

Noting thatW2 = Wy, this becomes

N/2—1 N/2—-1
X[kl = > xrlWnp)* + Wi Y x2r + 1(Way2)™
r=0 r=0
= G[k] + WEHIk].

The original N-point DFT can therefore be expressed in tesht@o
N/2-point DFTs.

The N/2-point transforms can again be decomposed, and the prozsssted
until only 2-point transforms remain. In general this regaiog, N stages of
decomposition. Since each stage requires approximatelgmplex
multiplications, the complexity of the resulting algoniths of the order of
Nlog, N.

The difference betweeN? andN log, N complex multiplications can
become considerable for large values\af For example, itV = 2048 then
N2/(N log, N) ~ 200.

There are numerous variations of FFT algorithms, and alloéxjhe basic
redundancy in the computation of the DFT. In almost all casesff-the-shelf
implementation of the FFT will be sufficient — there is seldany reason to
implement a FFT yourself.
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